{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Geoenrichment - Introduction to Enrich\n",
"\n",
"Discovering what is available and distilling this down to something usable is the first step in analysis. Consequently, this is the first piece of functionality we added support for, _introspection_. This provides the ability to discover what countries are available, and within a country, what enrichment variables are available and what travel modes are available for dynamically creating trade areas."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"from arcgis.gis import GIS\n",
"from arcgis.geoenrichment import get_countries, Country\n",
"\n",
"from demo_data import demo_data"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## GIS _Source_\n",
"\n",
"The source GIS being used determines the countries available. Business Analyst can be accessed either locally (ArcGIS Pro with Business Analyst and Data) or through a connection to a Web GIS (ArcGIS Enterprise or ArcGIS Online). In this case, we are connecting to an instance of ArcGIS Online."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"GIS @ https://bateam.maps.arcgis.com"
],
"text/plain": [
"GIS @ https://bateam.maps.arcgis.com version:10.2"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gis_agol = GIS(profile='ba')\n",
"\n",
"gis_agol"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Discovering Countries\n",
"\n",
"Since the data is organized into countries, this is the first instrospection step, discovering countries.\n",
"\n",
"### Country Source - local\n",
"\n",
"A local `gis` source can be used by passing in an instance of the `GIS` object created using the `'pro'` keyword. As you can see, I have quite a few datasets installed on my machine."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" iso2 | \n",
" iso3 | \n",
" name | \n",
" vintage | \n",
" country_id | \n",
" data_source_id | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" CA | \n",
" CAN | \n",
" Canada | \n",
" 2021 | \n",
" CAN_ESRI_2021 | \n",
" LOCAL;;CAN_ESRI_2021 | \n",
"
\n",
" \n",
" 1 | \n",
" US | \n",
" USA | \n",
" United States | \n",
" 2020 | \n",
" USA_ESRI_2020 | \n",
" LOCAL;;USA_ESRI_2020 | \n",
"
\n",
" \n",
" 2 | \n",
" US | \n",
" USA | \n",
" United States | \n",
" 2022 | \n",
" USA_ESRI_2022 | \n",
" LOCAL;;USA_ESRI_2022 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" iso2 iso3 name vintage country_id data_source_id\n",
"0 CA CAN Canada 2021 CAN_ESRI_2021 LOCAL;;CAN_ESRI_2021\n",
"1 US USA United States 2020 USA_ESRI_2020 LOCAL;;USA_ESRI_2020\n",
"2 US USA United States 2022 USA_ESRI_2022 LOCAL;;USA_ESRI_2022"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_countries(GIS('pro'))"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Country Source - Web GIS\n",
"\n",
"Similarly, we can access the countries available on the Web GIS through the `arcpy.gis.GIS` object. Obviously, if this is ArcGIS Online, this is a _lot_ of countries."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" iso2 | \n",
" iso3 | \n",
" name | \n",
" alt_name | \n",
" datasets | \n",
" default_dataset | \n",
" continent | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" AL | \n",
" ALB | \n",
" Albania | \n",
" ALBANIA | \n",
" [ALB_MBR_2021] | \n",
" ALB_MBR_2021 | \n",
" Europe | \n",
"
\n",
" \n",
" 1 | \n",
" DZ | \n",
" DZA | \n",
" Algeria | \n",
" ALGERIA | \n",
" [DZA_MBR_2021] | \n",
" DZA_MBR_2021 | \n",
" Africa | \n",
"
\n",
" \n",
" 2 | \n",
" AD | \n",
" AND | \n",
" Andorra | \n",
" ANDORRA | \n",
" [AND_MBR_2021] | \n",
" AND_MBR_2021 | \n",
" Europe | \n",
"
\n",
" \n",
" 3 | \n",
" AO | \n",
" AGO | \n",
" Angola | \n",
" ANGOLA | \n",
" [AGO_MBR_2021] | \n",
" AGO_MBR_2021 | \n",
" Africa | \n",
"
\n",
" \n",
" 4 | \n",
" AI | \n",
" AIA | \n",
" Anguilla | \n",
" ANGUILLA | \n",
" [AIA_MBR_2020] | \n",
" AIA_MBR_2020 | \n",
" North America | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 172 | \n",
" VE | \n",
" VEN | \n",
" Venezuela | \n",
" VENEZUELA, BOLIVARIAN REPUBLIC OF | \n",
" [VEN_MBR_2020] | \n",
" VEN_MBR_2020 | \n",
" South America | \n",
"
\n",
" \n",
" 173 | \n",
" VN | \n",
" VNM | \n",
" Vietnam | \n",
" VIET NAM | \n",
" [VNM_MBR_2020] | \n",
" VNM_MBR_2020 | \n",
" Asia | \n",
"
\n",
" \n",
" 174 | \n",
" VI | \n",
" VIR | \n",
" Virgin Islands | \n",
" UNITED STATES VIRGIN ISLANDS | \n",
" [VIR_MBR_2020] | \n",
" VIR_MBR_2020 | \n",
" North America | \n",
"
\n",
" \n",
" 175 | \n",
" ZM | \n",
" ZMB | \n",
" Zambia | \n",
" ZAMBIA | \n",
" [ZMB_MBR_2021] | \n",
" ZMB_MBR_2021 | \n",
" Africa | \n",
"
\n",
" \n",
" 176 | \n",
" ZW | \n",
" ZWE | \n",
" Zimbabwe | \n",
" ZIMBABWE | \n",
" [ZWE_MBR_2021] | \n",
" ZWE_MBR_2021 | \n",
" Africa | \n",
"
\n",
" \n",
"
\n",
"
177 rows × 7 columns
\n",
"
"
],
"text/plain": [
" iso2 iso3 name alt_name \\\n",
"0 AL ALB Albania ALBANIA \n",
"1 DZ DZA Algeria ALGERIA \n",
"2 AD AND Andorra ANDORRA \n",
"3 AO AGO Angola ANGOLA \n",
"4 AI AIA Anguilla ANGUILLA \n",
".. ... ... ... ... \n",
"172 VE VEN Venezuela VENEZUELA, BOLIVARIAN REPUBLIC OF \n",
"173 VN VNM Vietnam VIET NAM \n",
"174 VI VIR Virgin Islands UNITED STATES VIRGIN ISLANDS \n",
"175 ZM ZMB Zambia ZAMBIA \n",
"176 ZW ZWE Zimbabwe ZIMBABWE \n",
"\n",
" datasets default_dataset continent \n",
"0 [ALB_MBR_2021] ALB_MBR_2021 Europe \n",
"1 [DZA_MBR_2021] DZA_MBR_2021 Africa \n",
"2 [AND_MBR_2021] AND_MBR_2021 Europe \n",
"3 [AGO_MBR_2021] AGO_MBR_2021 Africa \n",
"4 [AIA_MBR_2020] AIA_MBR_2020 North America \n",
".. ... ... ... \n",
"172 [VEN_MBR_2020] VEN_MBR_2020 South America \n",
"173 [VNM_MBR_2020] VNM_MBR_2020 Asia \n",
"174 [VIR_MBR_2020] VIR_MBR_2020 North America \n",
"175 [ZMB_MBR_2021] ZMB_MBR_2021 Africa \n",
"176 [ZWE_MBR_2021] ZWE_MBR_2021 Africa \n",
"\n",
"[177 rows x 7 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_countries(gis_agol)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating a `Country`\n",
"\n",
"Before digging into enrichment variables, we need to create a `Country` object instance. A `Country` is created using the ISO3 code displayed in the data frame above along with the corresponding `gis` source."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"usa = Country('USA', gis=GIS('pro'))\n",
"\n",
"usa"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"#### Country - Explicit `year`\n",
"\n",
"If recalling from the introspection previously, three vintages of data are available on my machine for the USA; 2019, 2020, and 2021. If a model was developed against a specific country and data vintage, being able to specifically reference this data vintage is possible using the `year` parameter."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"usa2020 = Country('USA', gis=GIS('pro'), year=2020)\n",
"\n",
"usa2020"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Enrichment Variables\n",
"\n",
"Discovering enrichment variables available is possible through the `Country` object's `enrich_variables` property."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 27975 entries, 0 to 27974\n",
"Data columns (total 5 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 name 27975 non-null object\n",
" 1 alias 27975 non-null object\n",
" 2 data_collection 27975 non-null object\n",
" 3 enrich_name 27975 non-null object\n",
" 4 enrich_field_name 27975 non-null object\n",
"dtypes: object(5)\n",
"memory usage: 1.1+ MB\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" alias | \n",
" data_collection | \n",
" enrich_name | \n",
" enrich_field_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 10444 | \n",
" MP14143a_B_I | \n",
" 2022 Used Insomnia Prescription Drug : Index | \n",
" HealthPersonalCare | \n",
" HealthPersonalCare.MP14143a_B_I | \n",
" HealthPersonalCare_MP14143a_B_I | \n",
"
\n",
" \n",
" 25221 | \n",
" RACE3BPO20 | \n",
" 2020 Pop 3 Races: BL-PI-OTH | \n",
" raceandhispanicorigin | \n",
" raceandhispanicorigin.RACE3BPO20 | \n",
" raceandhispanicorigin_RACE3BPO20 | \n",
"
\n",
" \n",
" 14056 | \n",
" X8030_I | \n",
" 2022 Index: Prescription Drugs | \n",
" Health | \n",
" Health.X8030_I | \n",
" Health_X8030_I | \n",
"
\n",
" \n",
" 2885 | \n",
" AIF60C10 | \n",
" 2010 American Indian Females 60-64 | \n",
" agebyracebysex | \n",
" agebyracebysex.AIF60C10 | \n",
" agebyracebysex_AIF60C10 | \n",
"
\n",
" \n",
" 18019 | \n",
" X3042FY_X_A | \n",
" 2027 Tools/Equipment-Paint/Paper (Renter) : Av... | \n",
" HousingHousehold | \n",
" HousingHousehold.X3042FY_X_A | \n",
" HousingHousehold_X3042FY_X_A | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name alias \\\n",
"10444 MP14143a_B_I 2022 Used Insomnia Prescription Drug : Index \n",
"25221 RACE3BPO20 2020 Pop 3 Races: BL-PI-OTH \n",
"14056 X8030_I 2022 Index: Prescription Drugs \n",
"2885 AIF60C10 2010 American Indian Females 60-64 \n",
"18019 X3042FY_X_A 2027 Tools/Equipment-Paint/Paper (Renter) : Av... \n",
"\n",
" data_collection enrich_name \\\n",
"10444 HealthPersonalCare HealthPersonalCare.MP14143a_B_I \n",
"25221 raceandhispanicorigin raceandhispanicorigin.RACE3BPO20 \n",
"14056 Health Health.X8030_I \n",
"2885 agebyracebysex agebyracebysex.AIF60C10 \n",
"18019 HousingHousehold HousingHousehold.X3042FY_X_A \n",
"\n",
" enrich_field_name \n",
"10444 HealthPersonalCare_MP14143a_B_I \n",
"25221 raceandhispanicorigin_RACE3BPO20 \n",
"14056 Health_X8030_I \n",
"2885 agebyracebysex_AIF60C10 \n",
"18019 HousingHousehold_X3042FY_X_A "
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ev = usa.enrich_variables\n",
"\n",
"ev.info()\n",
"ev.sample(5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Filtering Variables\n",
"\n",
"The usefulness of relevant metadata, especially categorical data, cannot be overstated. Using relevant criteria we can quickly identify variables to use for enrichment."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Get Current Income Metrics\n",
"\n",
"Since a Pandas DataFrame, finding income indicies for use in analysis is relatively straightforward."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" alias | \n",
" data_collection | \n",
" enrich_name | \n",
" enrich_field_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" AVGHINC_CY | \n",
" 2022 Average Household Income | \n",
" AtRisk | \n",
" AtRisk.AVGHINC_CY | \n",
" AtRisk_AVGHINC_CY | \n",
"
\n",
" \n",
" 1 | \n",
" HINC0_CY | \n",
" 2022 HH Income <$15000 | \n",
" Policy | \n",
" Policy.HINC0_CY | \n",
" Policy_HINC0_CY | \n",
"
\n",
" \n",
" 2 | \n",
" HINC15_CY | \n",
" 2022 HH Income $15000-24999 | \n",
" Policy | \n",
" Policy.HINC15_CY | \n",
" Policy_HINC15_CY | \n",
"
\n",
" \n",
" 3 | \n",
" HINC25_CY | \n",
" 2022 HH Income $25000-34999 | \n",
" Policy | \n",
" Policy.HINC25_CY | \n",
" Policy_HINC25_CY | \n",
"
\n",
" \n",
" 4 | \n",
" HINC35_CY | \n",
" 2022 HH Income $35000-49999 | \n",
" Policy | \n",
" Policy.HINC35_CY | \n",
" Policy_HINC35_CY | \n",
"
\n",
" \n",
" 5 | \n",
" HINC50_CY | \n",
" 2022 HH Income $50000-74999 | \n",
" Policy | \n",
" Policy.HINC50_CY | \n",
" Policy_HINC50_CY | \n",
"
\n",
" \n",
" 6 | \n",
" HINC75_CY | \n",
" 2022 HH Income $75000-99999 | \n",
" Policy | \n",
" Policy.HINC75_CY | \n",
" Policy_HINC75_CY | \n",
"
\n",
" \n",
" 7 | \n",
" HINC100_CY | \n",
" 2022 HH Income $100000-149999 | \n",
" Policy | \n",
" Policy.HINC100_CY | \n",
" Policy_HINC100_CY | \n",
"
\n",
" \n",
" 8 | \n",
" HINC150_CY | \n",
" 2022 HH Income $150000-199999 | \n",
" Policy | \n",
" Policy.HINC150_CY | \n",
" Policy_HINC150_CY | \n",
"
\n",
" \n",
" 9 | \n",
" HINC200_CY | \n",
" 2022 HH Income $200000+ | \n",
" Policy | \n",
" Policy.HINC200_CY | \n",
" Policy_HINC200_CY | \n",
"
\n",
" \n",
" 10 | \n",
" MEDHINC_CY | \n",
" 2022 Median Household Income | \n",
" Policy | \n",
" Policy.MEDHINC_CY | \n",
" Policy_MEDHINC_CY | \n",
"
\n",
" \n",
" 11 | \n",
" PCI_CY | \n",
" 2022 Per Capita Income | \n",
" Policy | \n",
" Policy.PCI_CY | \n",
" Policy_PCI_CY | \n",
"
\n",
" \n",
" 12 | \n",
" AGGINC_CY | \n",
" 2022 Aggregate Income | \n",
" Policy | \n",
" Policy.AGGINC_CY | \n",
" Policy_AGGINC_CY | \n",
"
\n",
" \n",
" 13 | \n",
" AGGHINC_CY | \n",
" 2022 Aggregate HH Income | \n",
" Policy | \n",
" Policy.AGGHINC_CY | \n",
" Policy_AGGHINC_CY | \n",
"
\n",
" \n",
" 14 | \n",
" HINCBASECY | \n",
" 2022 Households by Income Base | \n",
" Policy | \n",
" Policy.HINCBASECY | \n",
" Policy_HINCBASECY | \n",
"
\n",
" \n",
" 15 | \n",
" MEDDI_CY | \n",
" 2022 Median Disposable Income | \n",
" disposableincome | \n",
" disposableincome.MEDDI_CY | \n",
" disposableincome_MEDDI_CY | \n",
"
\n",
" \n",
" 16 | \n",
" AVGDI_CY | \n",
" 2022 Average Disposable Income | \n",
" disposableincome | \n",
" disposableincome.AVGDI_CY | \n",
" disposableincome_AVGDI_CY | \n",
"
\n",
" \n",
" 17 | \n",
" AGGDI_CY | \n",
" 2022 Aggregate Disposable Income | \n",
" disposableincome | \n",
" disposableincome.AGGDI_CY | \n",
" disposableincome_AGGDI_CY | \n",
"
\n",
" \n",
" 18 | \n",
" DIBASE_CY | \n",
" 2022 Disposable Income Base | \n",
" disposableincome | \n",
" disposableincome.DIBASE_CY | \n",
" disposableincome_DIBASE_CY | \n",
"
\n",
" \n",
" 19 | \n",
" INCMORT_CY | \n",
" 2022 Pct of Income for Mortgage | \n",
" householdtotals | \n",
" householdtotals.INCMORT_CY | \n",
" householdtotals_INCMORT_CY | \n",
"
\n",
" \n",
" 20 | \n",
" AVGIA15_CY | \n",
" 2022 Avg HH Income: HHr 15-24 | \n",
" incomebyage | \n",
" incomebyage.AVGIA15_CY | \n",
" incomebyage_AVGIA15_CY | \n",
"
\n",
" \n",
" 21 | \n",
" IA15BASECY | \n",
" 2022 HH Income Base: HHr 15-24 | \n",
" incomebyage | \n",
" incomebyage.IA15BASECY | \n",
" incomebyage_IA15BASECY | \n",
"
\n",
" \n",
" 22 | \n",
" AVGIA25_CY | \n",
" 2022 Avg HH Income: HHr 25-34 | \n",
" incomebyage | \n",
" incomebyage.AVGIA25_CY | \n",
" incomebyage_AVGIA25_CY | \n",
"
\n",
" \n",
" 23 | \n",
" IA25BASECY | \n",
" 2022 HH Income Base: HHr 25-34 | \n",
" incomebyage | \n",
" incomebyage.IA25BASECY | \n",
" incomebyage_IA25BASECY | \n",
"
\n",
" \n",
" 24 | \n",
" AVGIA35_CY | \n",
" 2022 Avg HH Income: HHr 35-44 | \n",
" incomebyage | \n",
" incomebyage.AVGIA35_CY | \n",
" incomebyage_AVGIA35_CY | \n",
"
\n",
" \n",
" 25 | \n",
" IA35BASECY | \n",
" 2022 HH Income Base: HHr 35-44 | \n",
" incomebyage | \n",
" incomebyage.IA35BASECY | \n",
" incomebyage_IA35BASECY | \n",
"
\n",
" \n",
" 26 | \n",
" AVGIA45_CY | \n",
" 2022 Avg HH Income: HHr 45-54 | \n",
" incomebyage | \n",
" incomebyage.AVGIA45_CY | \n",
" incomebyage_AVGIA45_CY | \n",
"
\n",
" \n",
" 27 | \n",
" IA45BASECY | \n",
" 2022 HH Income Base: HHr 45-54 | \n",
" incomebyage | \n",
" incomebyage.IA45BASECY | \n",
" incomebyage_IA45BASECY | \n",
"
\n",
" \n",
" 28 | \n",
" AVGIA55_CY | \n",
" 2022 Avg HH Income: HHr 55-64 | \n",
" incomebyage | \n",
" incomebyage.AVGIA55_CY | \n",
" incomebyage_AVGIA55_CY | \n",
"
\n",
" \n",
" 29 | \n",
" IA55BASECY | \n",
" 2022 HH Income Base: HHr 55-64 | \n",
" incomebyage | \n",
" incomebyage.IA55BASECY | \n",
" incomebyage_IA55BASECY | \n",
"
\n",
" \n",
" 30 | \n",
" AVGIA65_CY | \n",
" 2022 Avg HH Income: HHr 65-74 | \n",
" incomebyage | \n",
" incomebyage.AVGIA65_CY | \n",
" incomebyage_AVGIA65_CY | \n",
"
\n",
" \n",
" 31 | \n",
" IA65BASECY | \n",
" 2022 HH Income Base: HHr 65-74 | \n",
" incomebyage | \n",
" incomebyage.IA65BASECY | \n",
" incomebyage_IA65BASECY | \n",
"
\n",
" \n",
" 32 | \n",
" AVGIA75_CY | \n",
" 2022 Avg HH Income: HHr 75+ | \n",
" incomebyage | \n",
" incomebyage.AVGIA75_CY | \n",
" incomebyage_AVGIA75_CY | \n",
"
\n",
" \n",
" 33 | \n",
" IA75BASECY | \n",
" 2022 HH Income Base: HHr 75+ | \n",
" incomebyage | \n",
" incomebyage.IA75BASECY | \n",
" incomebyage_IA75BASECY | \n",
"
\n",
" \n",
" 34 | \n",
" IA55UBASCY | \n",
" 2022 HH Income Base: HHr 55+ | \n",
" incomebyage | \n",
" incomebyage.IA55UBASCY | \n",
" incomebyage_IA55UBASCY | \n",
"
\n",
" \n",
" 35 | \n",
" AVGIA55UCY | \n",
" 2022 Avg HH Income: HHr 55+ | \n",
" incomebyage | \n",
" incomebyage.AVGIA55UCY | \n",
" incomebyage_AVGIA55UCY | \n",
"
\n",
" \n",
" 36 | \n",
" IA65UBASCY | \n",
" 2022 HH Income Base: HHr 65+ | \n",
" incomebyage | \n",
" incomebyage.IA65UBASCY | \n",
" incomebyage_IA65UBASCY | \n",
"
\n",
" \n",
" 37 | \n",
" AVGIA65UCY | \n",
" 2022 Avg HH Income: HHr 65+ | \n",
" incomebyage | \n",
" incomebyage.AVGIA65UCY | \n",
" incomebyage_AVGIA65UCY | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name alias data_collection \\\n",
"0 AVGHINC_CY 2022 Average Household Income AtRisk \n",
"1 HINC0_CY 2022 HH Income <$15000 Policy \n",
"2 HINC15_CY 2022 HH Income $15000-24999 Policy \n",
"3 HINC25_CY 2022 HH Income $25000-34999 Policy \n",
"4 HINC35_CY 2022 HH Income $35000-49999 Policy \n",
"5 HINC50_CY 2022 HH Income $50000-74999 Policy \n",
"6 HINC75_CY 2022 HH Income $75000-99999 Policy \n",
"7 HINC100_CY 2022 HH Income $100000-149999 Policy \n",
"8 HINC150_CY 2022 HH Income $150000-199999 Policy \n",
"9 HINC200_CY 2022 HH Income $200000+ Policy \n",
"10 MEDHINC_CY 2022 Median Household Income Policy \n",
"11 PCI_CY 2022 Per Capita Income Policy \n",
"12 AGGINC_CY 2022 Aggregate Income Policy \n",
"13 AGGHINC_CY 2022 Aggregate HH Income Policy \n",
"14 HINCBASECY 2022 Households by Income Base Policy \n",
"15 MEDDI_CY 2022 Median Disposable Income disposableincome \n",
"16 AVGDI_CY 2022 Average Disposable Income disposableincome \n",
"17 AGGDI_CY 2022 Aggregate Disposable Income disposableincome \n",
"18 DIBASE_CY 2022 Disposable Income Base disposableincome \n",
"19 INCMORT_CY 2022 Pct of Income for Mortgage householdtotals \n",
"20 AVGIA15_CY 2022 Avg HH Income: HHr 15-24 incomebyage \n",
"21 IA15BASECY 2022 HH Income Base: HHr 15-24 incomebyage \n",
"22 AVGIA25_CY 2022 Avg HH Income: HHr 25-34 incomebyage \n",
"23 IA25BASECY 2022 HH Income Base: HHr 25-34 incomebyage \n",
"24 AVGIA35_CY 2022 Avg HH Income: HHr 35-44 incomebyage \n",
"25 IA35BASECY 2022 HH Income Base: HHr 35-44 incomebyage \n",
"26 AVGIA45_CY 2022 Avg HH Income: HHr 45-54 incomebyage \n",
"27 IA45BASECY 2022 HH Income Base: HHr 45-54 incomebyage \n",
"28 AVGIA55_CY 2022 Avg HH Income: HHr 55-64 incomebyage \n",
"29 IA55BASECY 2022 HH Income Base: HHr 55-64 incomebyage \n",
"30 AVGIA65_CY 2022 Avg HH Income: HHr 65-74 incomebyage \n",
"31 IA65BASECY 2022 HH Income Base: HHr 65-74 incomebyage \n",
"32 AVGIA75_CY 2022 Avg HH Income: HHr 75+ incomebyage \n",
"33 IA75BASECY 2022 HH Income Base: HHr 75+ incomebyage \n",
"34 IA55UBASCY 2022 HH Income Base: HHr 55+ incomebyage \n",
"35 AVGIA55UCY 2022 Avg HH Income: HHr 55+ incomebyage \n",
"36 IA65UBASCY 2022 HH Income Base: HHr 65+ incomebyage \n",
"37 AVGIA65UCY 2022 Avg HH Income: HHr 65+ incomebyage \n",
"\n",
" enrich_name enrich_field_name \n",
"0 AtRisk.AVGHINC_CY AtRisk_AVGHINC_CY \n",
"1 Policy.HINC0_CY Policy_HINC0_CY \n",
"2 Policy.HINC15_CY Policy_HINC15_CY \n",
"3 Policy.HINC25_CY Policy_HINC25_CY \n",
"4 Policy.HINC35_CY Policy_HINC35_CY \n",
"5 Policy.HINC50_CY Policy_HINC50_CY \n",
"6 Policy.HINC75_CY Policy_HINC75_CY \n",
"7 Policy.HINC100_CY Policy_HINC100_CY \n",
"8 Policy.HINC150_CY Policy_HINC150_CY \n",
"9 Policy.HINC200_CY Policy_HINC200_CY \n",
"10 Policy.MEDHINC_CY Policy_MEDHINC_CY \n",
"11 Policy.PCI_CY Policy_PCI_CY \n",
"12 Policy.AGGINC_CY Policy_AGGINC_CY \n",
"13 Policy.AGGHINC_CY Policy_AGGHINC_CY \n",
"14 Policy.HINCBASECY Policy_HINCBASECY \n",
"15 disposableincome.MEDDI_CY disposableincome_MEDDI_CY \n",
"16 disposableincome.AVGDI_CY disposableincome_AVGDI_CY \n",
"17 disposableincome.AGGDI_CY disposableincome_AGGDI_CY \n",
"18 disposableincome.DIBASE_CY disposableincome_DIBASE_CY \n",
"19 householdtotals.INCMORT_CY householdtotals_INCMORT_CY \n",
"20 incomebyage.AVGIA15_CY incomebyage_AVGIA15_CY \n",
"21 incomebyage.IA15BASECY incomebyage_IA15BASECY \n",
"22 incomebyage.AVGIA25_CY incomebyage_AVGIA25_CY \n",
"23 incomebyage.IA25BASECY incomebyage_IA25BASECY \n",
"24 incomebyage.AVGIA35_CY incomebyage_AVGIA35_CY \n",
"25 incomebyage.IA35BASECY incomebyage_IA35BASECY \n",
"26 incomebyage.AVGIA45_CY incomebyage_AVGIA45_CY \n",
"27 incomebyage.IA45BASECY incomebyage_IA45BASECY \n",
"28 incomebyage.AVGIA55_CY incomebyage_AVGIA55_CY \n",
"29 incomebyage.IA55BASECY incomebyage_IA55BASECY \n",
"30 incomebyage.AVGIA65_CY incomebyage_AVGIA65_CY \n",
"31 incomebyage.IA65BASECY incomebyage_IA65BASECY \n",
"32 incomebyage.AVGIA75_CY incomebyage_AVGIA75_CY \n",
"33 incomebyage.IA75BASECY incomebyage_IA75BASECY \n",
"34 incomebyage.IA55UBASCY incomebyage_IA55UBASCY \n",
"35 incomebyage.AVGIA55UCY incomebyage_AVGIA55UCY \n",
"36 incomebyage.IA65UBASCY incomebyage_IA65UBASCY \n",
"37 incomebyage.AVGIA65UCY incomebyage_AVGIA65UCY "
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"inc_vars = ev[\n",
" (ev.alias.str.lower().str.contains('income'))\n",
" & (ev.name.str.endswith('CY'))\n",
"].drop_duplicates('name').reset_index(drop=True)\n",
"\n",
"inc_vars"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"### Get Current Key Metrics\n",
"\n",
"One of the more common example datasets I use when exploring if an idea is vialbe are the current year key metrics."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" alias | \n",
" data_collection | \n",
" enrich_name | \n",
" enrich_field_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" TOTPOP_CY | \n",
" 2022 Total Population | \n",
" KeyUSFacts | \n",
" KeyUSFacts.TOTPOP_CY | \n",
" KeyUSFacts_TOTPOP_CY | \n",
"
\n",
" \n",
" 1 | \n",
" GQPOP_CY | \n",
" 2022 Group Quarters Population | \n",
" KeyUSFacts | \n",
" KeyUSFacts.GQPOP_CY | \n",
" KeyUSFacts_GQPOP_CY | \n",
"
\n",
" \n",
" 2 | \n",
" DIVINDX_CY | \n",
" 2022 Diversity Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.DIVINDX_CY | \n",
" KeyUSFacts_DIVINDX_CY | \n",
"
\n",
" \n",
" 3 | \n",
" TOTHH_CY | \n",
" 2022 Total Households | \n",
" KeyUSFacts | \n",
" KeyUSFacts.TOTHH_CY | \n",
" KeyUSFacts_TOTHH_CY | \n",
"
\n",
" \n",
" 4 | \n",
" AVGHHSZ_CY | \n",
" 2022 Average Household Size | \n",
" KeyUSFacts | \n",
" KeyUSFacts.AVGHHSZ_CY | \n",
" KeyUSFacts_AVGHHSZ_CY | \n",
"
\n",
" \n",
" 5 | \n",
" MEDHINC_CY | \n",
" 2022 Median Household Income | \n",
" KeyUSFacts | \n",
" KeyUSFacts.MEDHINC_CY | \n",
" KeyUSFacts_MEDHINC_CY | \n",
"
\n",
" \n",
" 6 | \n",
" AVGHINC_CY | \n",
" 2022 Average Household Income | \n",
" KeyUSFacts | \n",
" KeyUSFacts.AVGHINC_CY | \n",
" KeyUSFacts_AVGHINC_CY | \n",
"
\n",
" \n",
" 7 | \n",
" PCI_CY | \n",
" 2022 Per Capita Income | \n",
" KeyUSFacts | \n",
" KeyUSFacts.PCI_CY | \n",
" KeyUSFacts_PCI_CY | \n",
"
\n",
" \n",
" 8 | \n",
" TOTHU_CY | \n",
" 2022 Total Housing Units | \n",
" KeyUSFacts | \n",
" KeyUSFacts.TOTHU_CY | \n",
" KeyUSFacts_TOTHU_CY | \n",
"
\n",
" \n",
" 9 | \n",
" OWNER_CY | \n",
" 2022 Owner Occupied HUs | \n",
" KeyUSFacts | \n",
" KeyUSFacts.OWNER_CY | \n",
" KeyUSFacts_OWNER_CY | \n",
"
\n",
" \n",
" 10 | \n",
" RENTER_CY | \n",
" 2022 Renter Occupied HUs | \n",
" KeyUSFacts | \n",
" KeyUSFacts.RENTER_CY | \n",
" KeyUSFacts_RENTER_CY | \n",
"
\n",
" \n",
" 11 | \n",
" VACANT_CY | \n",
" 2022 Vacant Housing Units | \n",
" KeyUSFacts | \n",
" KeyUSFacts.VACANT_CY | \n",
" KeyUSFacts_VACANT_CY | \n",
"
\n",
" \n",
" 12 | \n",
" MEDVAL_CY | \n",
" 2022 Median Home Value | \n",
" KeyUSFacts | \n",
" KeyUSFacts.MEDVAL_CY | \n",
" KeyUSFacts_MEDVAL_CY | \n",
"
\n",
" \n",
" 13 | \n",
" AVGVAL_CY | \n",
" 2022 Average Home Value | \n",
" KeyUSFacts | \n",
" KeyUSFacts.AVGVAL_CY | \n",
" KeyUSFacts_AVGVAL_CY | \n",
"
\n",
" \n",
" 14 | \n",
" POPGRWCYFY | \n",
" 2022-2027 Growth Rate: Population | \n",
" KeyUSFacts | \n",
" KeyUSFacts.POPGRWCYFY | \n",
" KeyUSFacts_POPGRWCYFY | \n",
"
\n",
" \n",
" 15 | \n",
" HHGRWCYFY | \n",
" 2022-2027 Growth Rate: Households | \n",
" KeyUSFacts | \n",
" KeyUSFacts.HHGRWCYFY | \n",
" KeyUSFacts_HHGRWCYFY | \n",
"
\n",
" \n",
" 16 | \n",
" FAMGRWCYFY | \n",
" 2022-2027 Growth Rate: Families | \n",
" KeyUSFacts | \n",
" KeyUSFacts.FAMGRWCYFY | \n",
" KeyUSFacts_FAMGRWCYFY | \n",
"
\n",
" \n",
" 17 | \n",
" MHIGRWCYFY | \n",
" 2022-2027 Growth Rate: Median HH Inc | \n",
" KeyUSFacts | \n",
" KeyUSFacts.MHIGRWCYFY | \n",
" KeyUSFacts_MHIGRWCYFY | \n",
"
\n",
" \n",
" 18 | \n",
" PCIGRWCYFY | \n",
" 2022-2027 Growth Rate: Per Capita Inc | \n",
" KeyUSFacts | \n",
" KeyUSFacts.PCIGRWCYFY | \n",
" KeyUSFacts_PCIGRWCYFY | \n",
"
\n",
" \n",
" 19 | \n",
" DPOP_CY | \n",
" 2022 Total Daytime Population | \n",
" KeyUSFacts | \n",
" KeyUSFacts.DPOP_CY | \n",
" KeyUSFacts_DPOP_CY | \n",
"
\n",
" \n",
" 20 | \n",
" DPOPWRK_CY | \n",
" 2022 Daytime Pop: Workers | \n",
" KeyUSFacts | \n",
" KeyUSFacts.DPOPWRK_CY | \n",
" KeyUSFacts_DPOPWRK_CY | \n",
"
\n",
" \n",
" 21 | \n",
" DPOPRES_CY | \n",
" 2022 Daytime Pop: Residents | \n",
" KeyUSFacts | \n",
" KeyUSFacts.DPOPRES_CY | \n",
" KeyUSFacts_DPOPRES_CY | \n",
"
\n",
" \n",
" 22 | \n",
" GQPOP_CY_P | \n",
" 2022 Group Quarters Population : Percent | \n",
" KeyUSFacts | \n",
" KeyUSFacts.GQPOP_CY_P | \n",
" KeyUSFacts_GQPOP_CY_P | \n",
"
\n",
" \n",
" 23 | \n",
" AVGHHSZ_CY_I | \n",
" 2022 Average Household Size : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.AVGHHSZ_CY_I | \n",
" KeyUSFacts_AVGHHSZ_CY_I | \n",
"
\n",
" \n",
" 24 | \n",
" MEDHINC_CY_I | \n",
" 2022 Median Household Income : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.MEDHINC_CY_I | \n",
" KeyUSFacts_MEDHINC_CY_I | \n",
"
\n",
" \n",
" 25 | \n",
" AVGHINC_CY_I | \n",
" 2022 Average Household Income : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.AVGHINC_CY_I | \n",
" KeyUSFacts_AVGHINC_CY_I | \n",
"
\n",
" \n",
" 26 | \n",
" PCI_CY_I | \n",
" 2022 Per Capita Income : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.PCI_CY_I | \n",
" KeyUSFacts_PCI_CY_I | \n",
"
\n",
" \n",
" 27 | \n",
" OWNER_CY_P | \n",
" 2022 Owner Occupied HUs : Percent | \n",
" KeyUSFacts | \n",
" KeyUSFacts.OWNER_CY_P | \n",
" KeyUSFacts_OWNER_CY_P | \n",
"
\n",
" \n",
" 28 | \n",
" RENTER_CY_P | \n",
" 2022 Renter Occupied HUs : Percent | \n",
" KeyUSFacts | \n",
" KeyUSFacts.RENTER_CY_P | \n",
" KeyUSFacts_RENTER_CY_P | \n",
"
\n",
" \n",
" 29 | \n",
" VACANT_CY_P | \n",
" 2022 Vacant Housing Units : Percent | \n",
" KeyUSFacts | \n",
" KeyUSFacts.VACANT_CY_P | \n",
" KeyUSFacts_VACANT_CY_P | \n",
"
\n",
" \n",
" 30 | \n",
" MEDVAL_CY_I | \n",
" 2022 Median Home Value : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.MEDVAL_CY_I | \n",
" KeyUSFacts_MEDVAL_CY_I | \n",
"
\n",
" \n",
" 31 | \n",
" AVGVAL_CY_I | \n",
" 2022 Average Home Value : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.AVGVAL_CY_I | \n",
" KeyUSFacts_AVGVAL_CY_I | \n",
"
\n",
" \n",
" 32 | \n",
" POPGRWCYFY_I | \n",
" 2022-2027 Growth Rate: Population : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.POPGRWCYFY_I | \n",
" KeyUSFacts_POPGRWCYFY_I | \n",
"
\n",
" \n",
" 33 | \n",
" HHGRWCYFY_I | \n",
" 2022-2027 Growth Rate: Households : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.HHGRWCYFY_I | \n",
" KeyUSFacts_HHGRWCYFY_I | \n",
"
\n",
" \n",
" 34 | \n",
" FAMGRWCYFY_I | \n",
" 2022-2027 Growth Rate: Families : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.FAMGRWCYFY_I | \n",
" KeyUSFacts_FAMGRWCYFY_I | \n",
"
\n",
" \n",
" 35 | \n",
" MHIGRWCYFY_I | \n",
" 2022-2027 Growth Rate: Median HH Inc : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.MHIGRWCYFY_I | \n",
" KeyUSFacts_MHIGRWCYFY_I | \n",
"
\n",
" \n",
" 36 | \n",
" PCIGRWCYFY_I | \n",
" 2022-2027 Growth Rate: Per Capita Inc : Index | \n",
" KeyUSFacts | \n",
" KeyUSFacts.PCIGRWCYFY_I | \n",
" KeyUSFacts_PCIGRWCYFY_I | \n",
"
\n",
" \n",
" 37 | \n",
" DPOPWRK_CY_P | \n",
" 2022 Daytime Pop: Workers : Percent | \n",
" KeyUSFacts | \n",
" KeyUSFacts.DPOPWRK_CY_P | \n",
" KeyUSFacts_DPOPWRK_CY_P | \n",
"
\n",
" \n",
" 38 | \n",
" DPOPRES_CY_P | \n",
" 2022 Daytime Pop: Residents : Percent | \n",
" KeyUSFacts | \n",
" KeyUSFacts.DPOPRES_CY_P | \n",
" KeyUSFacts_DPOPRES_CY_P | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name alias \\\n",
"0 TOTPOP_CY 2022 Total Population \n",
"1 GQPOP_CY 2022 Group Quarters Population \n",
"2 DIVINDX_CY 2022 Diversity Index \n",
"3 TOTHH_CY 2022 Total Households \n",
"4 AVGHHSZ_CY 2022 Average Household Size \n",
"5 MEDHINC_CY 2022 Median Household Income \n",
"6 AVGHINC_CY 2022 Average Household Income \n",
"7 PCI_CY 2022 Per Capita Income \n",
"8 TOTHU_CY 2022 Total Housing Units \n",
"9 OWNER_CY 2022 Owner Occupied HUs \n",
"10 RENTER_CY 2022 Renter Occupied HUs \n",
"11 VACANT_CY 2022 Vacant Housing Units \n",
"12 MEDVAL_CY 2022 Median Home Value \n",
"13 AVGVAL_CY 2022 Average Home Value \n",
"14 POPGRWCYFY 2022-2027 Growth Rate: Population \n",
"15 HHGRWCYFY 2022-2027 Growth Rate: Households \n",
"16 FAMGRWCYFY 2022-2027 Growth Rate: Families \n",
"17 MHIGRWCYFY 2022-2027 Growth Rate: Median HH Inc \n",
"18 PCIGRWCYFY 2022-2027 Growth Rate: Per Capita Inc \n",
"19 DPOP_CY 2022 Total Daytime Population \n",
"20 DPOPWRK_CY 2022 Daytime Pop: Workers \n",
"21 DPOPRES_CY 2022 Daytime Pop: Residents \n",
"22 GQPOP_CY_P 2022 Group Quarters Population : Percent \n",
"23 AVGHHSZ_CY_I 2022 Average Household Size : Index \n",
"24 MEDHINC_CY_I 2022 Median Household Income : Index \n",
"25 AVGHINC_CY_I 2022 Average Household Income : Index \n",
"26 PCI_CY_I 2022 Per Capita Income : Index \n",
"27 OWNER_CY_P 2022 Owner Occupied HUs : Percent \n",
"28 RENTER_CY_P 2022 Renter Occupied HUs : Percent \n",
"29 VACANT_CY_P 2022 Vacant Housing Units : Percent \n",
"30 MEDVAL_CY_I 2022 Median Home Value : Index \n",
"31 AVGVAL_CY_I 2022 Average Home Value : Index \n",
"32 POPGRWCYFY_I 2022-2027 Growth Rate: Population : Index \n",
"33 HHGRWCYFY_I 2022-2027 Growth Rate: Households : Index \n",
"34 FAMGRWCYFY_I 2022-2027 Growth Rate: Families : Index \n",
"35 MHIGRWCYFY_I 2022-2027 Growth Rate: Median HH Inc : Index \n",
"36 PCIGRWCYFY_I 2022-2027 Growth Rate: Per Capita Inc : Index \n",
"37 DPOPWRK_CY_P 2022 Daytime Pop: Workers : Percent \n",
"38 DPOPRES_CY_P 2022 Daytime Pop: Residents : Percent \n",
"\n",
" data_collection enrich_name enrich_field_name \n",
"0 KeyUSFacts KeyUSFacts.TOTPOP_CY KeyUSFacts_TOTPOP_CY \n",
"1 KeyUSFacts KeyUSFacts.GQPOP_CY KeyUSFacts_GQPOP_CY \n",
"2 KeyUSFacts KeyUSFacts.DIVINDX_CY KeyUSFacts_DIVINDX_CY \n",
"3 KeyUSFacts KeyUSFacts.TOTHH_CY KeyUSFacts_TOTHH_CY \n",
"4 KeyUSFacts KeyUSFacts.AVGHHSZ_CY KeyUSFacts_AVGHHSZ_CY \n",
"5 KeyUSFacts KeyUSFacts.MEDHINC_CY KeyUSFacts_MEDHINC_CY \n",
"6 KeyUSFacts KeyUSFacts.AVGHINC_CY KeyUSFacts_AVGHINC_CY \n",
"7 KeyUSFacts KeyUSFacts.PCI_CY KeyUSFacts_PCI_CY \n",
"8 KeyUSFacts KeyUSFacts.TOTHU_CY KeyUSFacts_TOTHU_CY \n",
"9 KeyUSFacts KeyUSFacts.OWNER_CY KeyUSFacts_OWNER_CY \n",
"10 KeyUSFacts KeyUSFacts.RENTER_CY KeyUSFacts_RENTER_CY \n",
"11 KeyUSFacts KeyUSFacts.VACANT_CY KeyUSFacts_VACANT_CY \n",
"12 KeyUSFacts KeyUSFacts.MEDVAL_CY KeyUSFacts_MEDVAL_CY \n",
"13 KeyUSFacts KeyUSFacts.AVGVAL_CY KeyUSFacts_AVGVAL_CY \n",
"14 KeyUSFacts KeyUSFacts.POPGRWCYFY KeyUSFacts_POPGRWCYFY \n",
"15 KeyUSFacts KeyUSFacts.HHGRWCYFY KeyUSFacts_HHGRWCYFY \n",
"16 KeyUSFacts KeyUSFacts.FAMGRWCYFY KeyUSFacts_FAMGRWCYFY \n",
"17 KeyUSFacts KeyUSFacts.MHIGRWCYFY KeyUSFacts_MHIGRWCYFY \n",
"18 KeyUSFacts KeyUSFacts.PCIGRWCYFY KeyUSFacts_PCIGRWCYFY \n",
"19 KeyUSFacts KeyUSFacts.DPOP_CY KeyUSFacts_DPOP_CY \n",
"20 KeyUSFacts KeyUSFacts.DPOPWRK_CY KeyUSFacts_DPOPWRK_CY \n",
"21 KeyUSFacts KeyUSFacts.DPOPRES_CY KeyUSFacts_DPOPRES_CY \n",
"22 KeyUSFacts KeyUSFacts.GQPOP_CY_P KeyUSFacts_GQPOP_CY_P \n",
"23 KeyUSFacts KeyUSFacts.AVGHHSZ_CY_I KeyUSFacts_AVGHHSZ_CY_I \n",
"24 KeyUSFacts KeyUSFacts.MEDHINC_CY_I KeyUSFacts_MEDHINC_CY_I \n",
"25 KeyUSFacts KeyUSFacts.AVGHINC_CY_I KeyUSFacts_AVGHINC_CY_I \n",
"26 KeyUSFacts KeyUSFacts.PCI_CY_I KeyUSFacts_PCI_CY_I \n",
"27 KeyUSFacts KeyUSFacts.OWNER_CY_P KeyUSFacts_OWNER_CY_P \n",
"28 KeyUSFacts KeyUSFacts.RENTER_CY_P KeyUSFacts_RENTER_CY_P \n",
"29 KeyUSFacts KeyUSFacts.VACANT_CY_P KeyUSFacts_VACANT_CY_P \n",
"30 KeyUSFacts KeyUSFacts.MEDVAL_CY_I KeyUSFacts_MEDVAL_CY_I \n",
"31 KeyUSFacts KeyUSFacts.AVGVAL_CY_I KeyUSFacts_AVGVAL_CY_I \n",
"32 KeyUSFacts KeyUSFacts.POPGRWCYFY_I KeyUSFacts_POPGRWCYFY_I \n",
"33 KeyUSFacts KeyUSFacts.HHGRWCYFY_I KeyUSFacts_HHGRWCYFY_I \n",
"34 KeyUSFacts KeyUSFacts.FAMGRWCYFY_I KeyUSFacts_FAMGRWCYFY_I \n",
"35 KeyUSFacts KeyUSFacts.MHIGRWCYFY_I KeyUSFacts_MHIGRWCYFY_I \n",
"36 KeyUSFacts KeyUSFacts.PCIGRWCYFY_I KeyUSFacts_PCIGRWCYFY_I \n",
"37 KeyUSFacts KeyUSFacts.DPOPWRK_CY_P KeyUSFacts_DPOPWRK_CY_P \n",
"38 KeyUSFacts KeyUSFacts.DPOPRES_CY_P KeyUSFacts_DPOPRES_CY_P "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"kv = ev[\n",
" (ev.name.str.contains('CY'))\n",
" & (ev.data_collection.str.lower().str.contains('key'))\n",
"].reset_index(drop=True)\n",
"\n",
"kv"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Onto Enrich\n",
"\n",
"From here the next step is enriching data using the retrieved variables. As of the 2.0.1 release of the Python API for ArcGIS you can pass this data frame directly into the `enrich` function."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enrich Study Area Polygons"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 650 entries, 0 to 649\n",
"Data columns (total 2 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 LOCNUM 650 non-null object \n",
" 1 SHAPE 650 non-null geometry\n",
"dtypes: geometry(1), object(1)\n",
"memory usage: 10.3+ KB\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" LOCNUM | \n",
" SHAPE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 105550909 | \n",
" {\"rings\": [[[-13659712.491841972, 5689050.6789... | \n",
"
\n",
" \n",
" 1 | \n",
" 105633002 | \n",
" {\"rings\": [[[-13683812.381583042, 5712092.0429... | \n",
"
\n",
" \n",
" 2 | \n",
" 105759815 | \n",
" {\"rings\": [[[-13655812.509662066, 5706201.2159... | \n",
"
\n",
" \n",
" 3 | \n",
" 177692910 | \n",
" {\"rings\": [[[-13651962.527299367, 5690511.2941... | \n",
"
\n",
" \n",
" 4 | \n",
" 180308389 | \n",
" {\"rings\": [[[-13640787.578395057, 5708949.7851... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" LOCNUM SHAPE\n",
"0 105550909 {\"rings\": [[[-13659712.491841972, 5689050.6789...\n",
"1 105633002 {\"rings\": [[[-13683812.381583042, 5712092.0429...\n",
"2 105759815 {\"rings\": [[[-13655812.509662066, 5706201.2159...\n",
"3 177692910 {\"rings\": [[[-13651962.527299367, 5690511.2941...\n",
"4 180308389 {\"rings\": [[[-13640787.578395057, 5708949.7851..."
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"study_area_df = demo_data.pdx_coffee_study_areas_3min.df\n",
"\n",
"study_area_df.info()\n",
"study_area_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 650 entries, 0 to 649\n",
"Data columns (total 43 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 locnum 650 non-null object \n",
" 1 has_data 650 non-null int32 \n",
" 2 aggregation_method 650 non-null object \n",
" 3 totpop_cy 650 non-null float64 \n",
" 4 gqpop_cy 650 non-null float64 \n",
" 5 divindx_cy 650 non-null float64 \n",
" 6 tothh_cy 650 non-null float64 \n",
" 7 avghhsz_cy 650 non-null float64 \n",
" 8 medhinc_cy 650 non-null float64 \n",
" 9 avghinc_cy 650 non-null float64 \n",
" 10 pci_cy 650 non-null float64 \n",
" 11 tothu_cy 650 non-null float64 \n",
" 12 owner_cy 650 non-null float64 \n",
" 13 renter_cy 650 non-null float64 \n",
" 14 vacant_cy 650 non-null float64 \n",
" 15 medval_cy 650 non-null float64 \n",
" 16 avgval_cy 650 non-null float64 \n",
" 17 popgrwcyfy 650 non-null float64 \n",
" 18 hhgrwcyfy 650 non-null float64 \n",
" 19 famgrwcyfy 650 non-null float64 \n",
" 20 mhigrwcyfy 650 non-null float64 \n",
" 21 pcigrwcyfy 650 non-null float64 \n",
" 22 dpop_cy 650 non-null float64 \n",
" 23 dpopwrk_cy 650 non-null float64 \n",
" 24 dpopres_cy 650 non-null float64 \n",
" 25 gqpop_cy_p 650 non-null float64 \n",
" 26 avghhsz_cy_i 650 non-null int32 \n",
" 27 medhinc_cy_i 650 non-null int32 \n",
" 28 avghinc_cy_i 650 non-null int32 \n",
" 29 pci_cy_i 650 non-null int32 \n",
" 30 owner_cy_p 650 non-null float64 \n",
" 31 renter_cy_p 650 non-null float64 \n",
" 32 vacant_cy_p 650 non-null float64 \n",
" 33 medval_cy_i 650 non-null int32 \n",
" 34 avgval_cy_i 650 non-null int32 \n",
" 35 popgrwcyfy_i 650 non-null int32 \n",
" 36 hhgrwcyfy_i 650 non-null int32 \n",
" 37 famgrwcyfy_i 650 non-null int32 \n",
" 38 mhigrwcyfy_i 650 non-null int32 \n",
" 39 pcigrwcyfy_i 650 non-null int32 \n",
" 40 dpopwrk_cy_p 650 non-null float64 \n",
" 41 dpopres_cy_p 650 non-null float64 \n",
" 42 SHAPE 650 non-null geometry\n",
"dtypes: float64(28), geometry(1), int32(12), object(2)\n",
"memory usage: 188.0+ KB\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" locnum | \n",
" has_data | \n",
" aggregation_method | \n",
" totpop_cy | \n",
" gqpop_cy | \n",
" divindx_cy | \n",
" tothh_cy | \n",
" avghhsz_cy | \n",
" medhinc_cy | \n",
" avghinc_cy | \n",
" ... | \n",
" medval_cy_i | \n",
" avgval_cy_i | \n",
" popgrwcyfy_i | \n",
" hhgrwcyfy_i | \n",
" famgrwcyfy_i | \n",
" mhigrwcyfy_i | \n",
" pcigrwcyfy_i | \n",
" dpopwrk_cy_p | \n",
" dpopres_cy_p | \n",
" SHAPE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 105550909 | \n",
" 1 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 6138.0 | \n",
" 143.0 | \n",
" 41.9 | \n",
" 2575.0 | \n",
" 2.33 | \n",
" 119103.0 | \n",
" 176581.0 | \n",
" ... | \n",
" 231 | \n",
" 191 | \n",
" 408 | \n",
" 294 | \n",
" 275 | \n",
" 109 | \n",
" 79 | \n",
" 73.54 | \n",
" 26.46 | \n",
" {\"rings\": [[[-122.70728508062291, 45.427343047... | \n",
"
\n",
" \n",
" 1 | \n",
" 105633002 | \n",
" 1 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 39.0 | \n",
" 0.0 | \n",
" 61.0 | \n",
" 13.0 | \n",
" 3.00 | \n",
" 111816.0 | \n",
" 135177.0 | \n",
" ... | \n",
" 163 | \n",
" 130 | \n",
" -208 | \n",
" 0 | \n",
" 0 | \n",
" 46 | \n",
" 121 | \n",
" 99.09 | \n",
" 0.91 | \n",
" {\"rings\": [[[-122.92377807415231, 45.572420302... | \n",
"
\n",
" \n",
" 2 | \n",
" 105759815 | \n",
" 1 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 11643.0 | \n",
" 1335.0 | \n",
" 55.8 | \n",
" 7136.0 | \n",
" 1.44 | \n",
" 66266.0 | \n",
" 107837.0 | \n",
" ... | \n",
" 222 | \n",
" 181 | \n",
" 304 | \n",
" 248 | \n",
" 289 | \n",
" 302 | \n",
" 134 | \n",
" 85.79 | \n",
" 14.21 | \n",
" {\"rings\": [[[-122.6722509453407, 45.5353649659... | \n",
"
\n",
" \n",
" 3 | \n",
" 177692910 | \n",
" 1 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 5949.0 | \n",
" 62.0 | \n",
" 53.5 | \n",
" 2612.0 | \n",
" 2.25 | \n",
" 55293.0 | \n",
" 75609.0 | \n",
" ... | \n",
" 147 | \n",
" 116 | \n",
" 28 | \n",
" 16 | \n",
" -18 | \n",
" 88 | \n",
" 118 | \n",
" 50.23 | \n",
" 49.77 | \n",
" {\"rings\": [[[-122.6376659650056, 45.4365507371... | \n",
"
\n",
" \n",
" 4 | \n",
" 180308389 | \n",
" 1 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 12853.0 | \n",
" 677.0 | \n",
" 68.0 | \n",
" 4924.0 | \n",
" 2.47 | \n",
" 63848.0 | \n",
" 81311.0 | \n",
" ... | \n",
" 132 | \n",
" 108 | \n",
" -100 | \n",
" -119 | \n",
" -146 | \n",
" 136 | \n",
" 120 | \n",
" 43.26 | \n",
" 56.74 | \n",
" {\"rings\": [[[-122.53727969104438, 45.552657456... | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 43 columns
\n",
"
"
],
"text/plain": [
" locnum has_data aggregation_method \\\n",
"0 105550909 1 BlockApportionment:US.BlockGroups;PointsLayer:... \n",
"1 105633002 1 BlockApportionment:US.BlockGroups;PointsLayer:... \n",
"2 105759815 1 BlockApportionment:US.BlockGroups;PointsLayer:... \n",
"3 177692910 1 BlockApportionment:US.BlockGroups;PointsLayer:... \n",
"4 180308389 1 BlockApportionment:US.BlockGroups;PointsLayer:... \n",
"\n",
" totpop_cy gqpop_cy divindx_cy tothh_cy avghhsz_cy medhinc_cy \\\n",
"0 6138.0 143.0 41.9 2575.0 2.33 119103.0 \n",
"1 39.0 0.0 61.0 13.0 3.00 111816.0 \n",
"2 11643.0 1335.0 55.8 7136.0 1.44 66266.0 \n",
"3 5949.0 62.0 53.5 2612.0 2.25 55293.0 \n",
"4 12853.0 677.0 68.0 4924.0 2.47 63848.0 \n",
"\n",
" avghinc_cy ... medval_cy_i avgval_cy_i popgrwcyfy_i hhgrwcyfy_i \\\n",
"0 176581.0 ... 231 191 408 294 \n",
"1 135177.0 ... 163 130 -208 0 \n",
"2 107837.0 ... 222 181 304 248 \n",
"3 75609.0 ... 147 116 28 16 \n",
"4 81311.0 ... 132 108 -100 -119 \n",
"\n",
" famgrwcyfy_i mhigrwcyfy_i pcigrwcyfy_i dpopwrk_cy_p dpopres_cy_p \\\n",
"0 275 109 79 73.54 26.46 \n",
"1 0 46 121 99.09 0.91 \n",
"2 289 302 134 85.79 14.21 \n",
"3 -18 88 118 50.23 49.77 \n",
"4 -146 136 120 43.26 56.74 \n",
"\n",
" SHAPE \n",
"0 {\"rings\": [[[-122.70728508062291, 45.427343047... \n",
"1 {\"rings\": [[[-122.92377807415231, 45.572420302... \n",
"2 {\"rings\": [[[-122.6722509453407, 45.5353649659... \n",
"3 {\"rings\": [[[-122.6376659650056, 45.4365507371... \n",
"4 {\"rings\": [[[-122.53727969104438, 45.552657456... \n",
"\n",
"[5 rows x 43 columns]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"study_area_enrich_df = usa.enrich(study_area_df, enrich_variables=kv)\n",
"\n",
"study_area_enrich_df.info()\n",
"study_area_enrich_df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enrich Point Locations"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 650 entries, 0 to 649\n",
"Data columns (total 2 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 LOCNUM 650 non-null object \n",
" 1 SHAPE 650 non-null geometry\n",
"dtypes: geometry(1), object(1)\n",
"memory usage: 10.3+ KB\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" LOCNUM | \n",
" SHAPE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 105550909 | \n",
" {\"x\": -13661187.466078103, \"y\": 5686302.261006... | \n",
"
\n",
" \n",
" 1 | \n",
" 105633002 | \n",
" {\"x\": -13683283.32746541, \"y\": 5709438.5596519... | \n",
"
\n",
" \n",
" 2 | \n",
" 105759815 | \n",
" {\"x\": -13656422.54659419, \"y\": 5704599.4372188... | \n",
"
\n",
" \n",
" 3 | \n",
" 177692910 | \n",
" {\"x\": -13651479.293286022, \"y\": 5687492.553844... | \n",
"
\n",
" \n",
" 4 | \n",
" 180308389 | \n",
" {\"x\": -13640908.50575978, \"y\": 5706009.5641631... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" LOCNUM SHAPE\n",
"0 105550909 {\"x\": -13661187.466078103, \"y\": 5686302.261006...\n",
"1 105633002 {\"x\": -13683283.32746541, \"y\": 5709438.5596519...\n",
"2 105759815 {\"x\": -13656422.54659419, \"y\": 5704599.4372188...\n",
"3 177692910 {\"x\": -13651479.293286022, \"y\": 5687492.553844...\n",
"4 180308389 {\"x\": -13640908.50575978, \"y\": 5706009.5641631..."
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pt_df = demo_data.pdx_coffee_locations.df\n",
"\n",
"pt_df.info()\n",
"pt_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" alias | \n",
" description | \n",
" type | \n",
" impedance | \n",
" impedance_category | \n",
" time_attribute_name | \n",
" distance_attribute_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" driving_time | \n",
" Driving Time | \n",
" Models the movement of cars and other similar ... | \n",
" AUTOMOBILE | \n",
" TravelTime | \n",
" temporal | \n",
" TravelTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 1 | \n",
" driving_distance | \n",
" Driving Distance | \n",
" Models the movement of cars and other similar ... | \n",
" AUTOMOBILE | \n",
" Kilometers | \n",
" distance | \n",
" TravelTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 2 | \n",
" trucking_time | \n",
" Trucking Time | \n",
" Models basic truck travel by preferring design... | \n",
" TRUCK | \n",
" TruckTravelTime | \n",
" temporal | \n",
" TruckTravelTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 3 | \n",
" trucking_distance | \n",
" Trucking Distance | \n",
" Models basic truck travel by preferring design... | \n",
" TRUCK | \n",
" Kilometers | \n",
" distance | \n",
" TruckTravelTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 4 | \n",
" walking_time | \n",
" Walking Time | \n",
" Follows paths and roads that allow pedestrian ... | \n",
" WALK | \n",
" WalkTime | \n",
" temporal | \n",
" WalkTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 5 | \n",
" walking_distance | \n",
" Walking Distance | \n",
" Follows paths and roads that allow pedestrian ... | \n",
" WALK | \n",
" Kilometers | \n",
" distance | \n",
" WalkTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 6 | \n",
" rural_driving_time | \n",
" Rural Driving Time | \n",
" Models the movement of cars and other similar ... | \n",
" AUTOMOBILE | \n",
" TravelTime | \n",
" temporal | \n",
" TravelTime | \n",
" Kilometers | \n",
"
\n",
" \n",
" 7 | \n",
" rural_driving_distance | \n",
" Rural Driving Distance | \n",
" Models the movement of cars and other similar ... | \n",
" AUTOMOBILE | \n",
" Kilometers | \n",
" distance | \n",
" TravelTime | \n",
" Kilometers | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name alias \\\n",
"0 driving_time Driving Time \n",
"1 driving_distance Driving Distance \n",
"2 trucking_time Trucking Time \n",
"3 trucking_distance Trucking Distance \n",
"4 walking_time Walking Time \n",
"5 walking_distance Walking Distance \n",
"6 rural_driving_time Rural Driving Time \n",
"7 rural_driving_distance Rural Driving Distance \n",
"\n",
" description type \\\n",
"0 Models the movement of cars and other similar ... AUTOMOBILE \n",
"1 Models the movement of cars and other similar ... AUTOMOBILE \n",
"2 Models basic truck travel by preferring design... TRUCK \n",
"3 Models basic truck travel by preferring design... TRUCK \n",
"4 Follows paths and roads that allow pedestrian ... WALK \n",
"5 Follows paths and roads that allow pedestrian ... WALK \n",
"6 Models the movement of cars and other similar ... AUTOMOBILE \n",
"7 Models the movement of cars and other similar ... AUTOMOBILE \n",
"\n",
" impedance impedance_category time_attribute_name \\\n",
"0 TravelTime temporal TravelTime \n",
"1 Kilometers distance TravelTime \n",
"2 TruckTravelTime temporal TruckTravelTime \n",
"3 Kilometers distance TruckTravelTime \n",
"4 WalkTime temporal WalkTime \n",
"5 Kilometers distance WalkTime \n",
"6 TravelTime temporal TravelTime \n",
"7 Kilometers distance TravelTime \n",
"\n",
" distance_attribute_name \n",
"0 Kilometers \n",
"1 Kilometers \n",
"2 Kilometers \n",
"3 Kilometers \n",
"4 Kilometers \n",
"5 Kilometers \n",
"6 Kilometers \n",
"7 Kilometers "
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"usa.travel_modes"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 650 entries, 0 to 649\n",
"Data columns (total 47 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 locnum 650 non-null object \n",
" 1 has_data 650 non-null int32 \n",
" 2 area_type 650 non-null object \n",
" 3 buffer_units 650 non-null object \n",
" 4 buffer_unit 650 non-null object \n",
" 5 buffer_radii 650 non-null float64 \n",
" 6 aggregation_method 650 non-null object \n",
" 7 totpop_cy 650 non-null float64 \n",
" 8 gqpop_cy 650 non-null float64 \n",
" 9 divindx_cy 650 non-null float64 \n",
" 10 tothh_cy 650 non-null float64 \n",
" 11 avghhsz_cy 650 non-null float64 \n",
" 12 medhinc_cy 650 non-null float64 \n",
" 13 avghinc_cy 650 non-null float64 \n",
" 14 pci_cy 650 non-null float64 \n",
" 15 tothu_cy 650 non-null float64 \n",
" 16 owner_cy 650 non-null float64 \n",
" 17 renter_cy 650 non-null float64 \n",
" 18 vacant_cy 650 non-null float64 \n",
" 19 medval_cy 650 non-null float64 \n",
" 20 avgval_cy 650 non-null float64 \n",
" 21 popgrwcyfy 650 non-null float64 \n",
" 22 hhgrwcyfy 650 non-null float64 \n",
" 23 famgrwcyfy 650 non-null float64 \n",
" 24 mhigrwcyfy 650 non-null float64 \n",
" 25 pcigrwcyfy 650 non-null float64 \n",
" 26 dpop_cy 650 non-null float64 \n",
" 27 dpopwrk_cy 650 non-null float64 \n",
" 28 dpopres_cy 650 non-null float64 \n",
" 29 gqpop_cy_p 650 non-null float64 \n",
" 30 avghhsz_cy_i 650 non-null int32 \n",
" 31 medhinc_cy_i 650 non-null int32 \n",
" 32 avghinc_cy_i 650 non-null int32 \n",
" 33 pci_cy_i 650 non-null int32 \n",
" 34 owner_cy_p 650 non-null float64 \n",
" 35 renter_cy_p 650 non-null float64 \n",
" 36 vacant_cy_p 650 non-null float64 \n",
" 37 medval_cy_i 650 non-null int32 \n",
" 38 avgval_cy_i 650 non-null int32 \n",
" 39 popgrwcyfy_i 650 non-null int32 \n",
" 40 hhgrwcyfy_i 650 non-null int32 \n",
" 41 famgrwcyfy_i 650 non-null int32 \n",
" 42 mhigrwcyfy_i 650 non-null int32 \n",
" 43 pcigrwcyfy_i 650 non-null int32 \n",
" 44 dpopwrk_cy_p 650 non-null float64 \n",
" 45 dpopres_cy_p 650 non-null float64 \n",
" 46 SHAPE 650 non-null geometry\n",
"dtypes: float64(29), geometry(1), int32(12), object(5)\n",
"memory usage: 208.3+ KB\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" locnum | \n",
" has_data | \n",
" area_type | \n",
" buffer_units | \n",
" buffer_unit | \n",
" buffer_radii | \n",
" aggregation_method | \n",
" totpop_cy | \n",
" gqpop_cy | \n",
" divindx_cy | \n",
" ... | \n",
" medval_cy_i | \n",
" avgval_cy_i | \n",
" popgrwcyfy_i | \n",
" hhgrwcyfy_i | \n",
" famgrwcyfy_i | \n",
" mhigrwcyfy_i | \n",
" pcigrwcyfy_i | \n",
" dpopwrk_cy_p | \n",
" dpopres_cy_p | \n",
" SHAPE | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 105550909 | \n",
" 1 | \n",
" Driving Time | \n",
" Minutes | \n",
" Minutes | \n",
" 3.0 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 4132.0 | \n",
" 40.0 | \n",
" 40.5 | \n",
" ... | \n",
" 230 | \n",
" 198 | \n",
" 444 | \n",
" 310 | \n",
" 286 | \n",
" 117 | \n",
" 82 | \n",
" 75.67 | \n",
" 24.33 | \n",
" {\"x\": -122.72053500019666, \"y\": 45.41001299996... | \n",
"
\n",
" \n",
" 1 | \n",
" 105633002 | \n",
" 1 | \n",
" Driving Time | \n",
" Minutes | \n",
" Minutes | \n",
" 3.0 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 223.0 | \n",
" 0.0 | \n",
" 78.6 | \n",
" ... | \n",
" 230 | \n",
" 190 | \n",
" -36 | \n",
" -77 | \n",
" -111 | \n",
" 0 | \n",
" 27 | \n",
" 95.98 | \n",
" 4.02 | \n",
" {\"x\": -122.91902550031074, \"y\": 45.55573200030... | \n",
"
\n",
" \n",
" 2 | \n",
" 105759815 | \n",
" 1 | \n",
" Driving Time | \n",
" Minutes | \n",
" Minutes | \n",
" 3.0 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 13632.0 | \n",
" 1818.0 | \n",
" 56.0 | \n",
" ... | \n",
" 213 | \n",
" 174 | \n",
" 412 | \n",
" 377 | \n",
" 346 | \n",
" 374 | \n",
" 142 | \n",
" 86.68 | \n",
" 13.32 | \n",
" {\"x\": -122.67773100005218, \"y\": 45.52528499988... | \n",
"
\n",
" \n",
" 3 | \n",
" 177692910 | \n",
" 1 | \n",
" Driving Time | \n",
" Minutes | \n",
" Minutes | \n",
" 3.0 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 11053.0 | \n",
" 145.0 | \n",
" 48.6 | \n",
" ... | \n",
" 151 | \n",
" 127 | \n",
" 120 | \n",
" 100 | \n",
" 57 | \n",
" 159 | \n",
" 114 | \n",
" 44.02 | \n",
" 55.98 | \n",
" {\"x\": -122.63332500012554, \"y\": 45.41751899971... | \n",
"
\n",
" \n",
" 4 | \n",
" 180308389 | \n",
" 1 | \n",
" Driving Time | \n",
" Minutes | \n",
" Minutes | \n",
" 3.0 | \n",
" BlockApportionment:US.BlockGroups;PointsLayer:... | \n",
" 11636.0 | \n",
" 669.0 | \n",
" 67.6 | \n",
" ... | \n",
" 133 | \n",
" 108 | \n",
" -104 | \n",
" -126 | \n",
" -150 | \n",
" 150 | \n",
" 121 | \n",
" 43.15 | \n",
" 56.85 | \n",
" {\"x\": -122.53836600036125, \"y\": 45.53415900023... | \n",
"
\n",
" \n",
"
\n",
"
5 rows × 47 columns
\n",
"
"
],
"text/plain": [
" locnum has_data area_type buffer_units buffer_unit buffer_radii \\\n",
"0 105550909 1 Driving Time Minutes Minutes 3.0 \n",
"1 105633002 1 Driving Time Minutes Minutes 3.0 \n",
"2 105759815 1 Driving Time Minutes Minutes 3.0 \n",
"3 177692910 1 Driving Time Minutes Minutes 3.0 \n",
"4 180308389 1 Driving Time Minutes Minutes 3.0 \n",
"\n",
" aggregation_method totpop_cy gqpop_cy \\\n",
"0 BlockApportionment:US.BlockGroups;PointsLayer:... 4132.0 40.0 \n",
"1 BlockApportionment:US.BlockGroups;PointsLayer:... 223.0 0.0 \n",
"2 BlockApportionment:US.BlockGroups;PointsLayer:... 13632.0 1818.0 \n",
"3 BlockApportionment:US.BlockGroups;PointsLayer:... 11053.0 145.0 \n",
"4 BlockApportionment:US.BlockGroups;PointsLayer:... 11636.0 669.0 \n",
"\n",
" divindx_cy ... medval_cy_i avgval_cy_i popgrwcyfy_i hhgrwcyfy_i \\\n",
"0 40.5 ... 230 198 444 310 \n",
"1 78.6 ... 230 190 -36 -77 \n",
"2 56.0 ... 213 174 412 377 \n",
"3 48.6 ... 151 127 120 100 \n",
"4 67.6 ... 133 108 -104 -126 \n",
"\n",
" famgrwcyfy_i mhigrwcyfy_i pcigrwcyfy_i dpopwrk_cy_p dpopres_cy_p \\\n",
"0 286 117 82 75.67 24.33 \n",
"1 -111 0 27 95.98 4.02 \n",
"2 346 374 142 86.68 13.32 \n",
"3 57 159 114 44.02 55.98 \n",
"4 -150 150 121 43.15 56.85 \n",
"\n",
" SHAPE \n",
"0 {\"x\": -122.72053500019666, \"y\": 45.41001299996... \n",
"1 {\"x\": -122.91902550031074, \"y\": 45.55573200030... \n",
"2 {\"x\": -122.67773100005218, \"y\": 45.52528499988... \n",
"3 {\"x\": -122.63332500012554, \"y\": 45.41751899971... \n",
"4 {\"x\": -122.53836600036125, \"y\": 45.53415900023... \n",
"\n",
"[5 rows x 47 columns]"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"enrich_pt_df = usa.enrich(pt_df, kv, proximity_type='driving_time', proximity_metric='minutes', proximity_value=3)\n",
"\n",
"enrich_pt_df.info()\n",
"enrich_pt_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}