{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Enrich Using Point Geometries" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Starting off, we import a few required Python resources. While there are quite a few in there, the import of note is `from arcgis.geoenrichment import Country, get_countries`. We are going to use this object and method to discover and perform our analysis." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "from pathlib import Path\n", "\n", "from arcgis.features import GeoAccessor\n", "from arcgis.geoenrichment import Country\n", "from arcgis.geometry import Geometry\n", "from arcgis.gis import GIS\n", "from dotenv import load_dotenv, find_dotenv\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we need some test data to work with. For the sake of simplicity, we are going to create two point geometries on the fly and build a Spatially Enabled Data Frame with these two points. We are going to investigate how to get very similar results by inputting just the list of point `Geometry` objects and also these geometries as part of a Spatially Enabled Data Frame." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
store_nameSHAPE
0Bayview{\"x\": -122.9074835, \"y\": 47.0450249, \"spatialR...
1Ralph's Thriftway{\"x\": -122.87496, \"y\": 47.0464031, \"spatialRef...
\n", "
" ], "text/plain": [ " store_name SHAPE\n", "0 Bayview {\"x\": -122.9074835, \"y\": 47.0450249, \"spatialR...\n", "1 Ralph's Thriftway {\"x\": -122.87496, \"y\": 47.0464031, \"spatialRef..." ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "nm_lst = ['Bayview', \"Ralph's Thriftway\"]\n", "coord_lst = [\n", " (-122.9074835, 47.0450249), # Bayview Grocery Store\n", " (-122.8749600, 47.0464031) # Ralph's Thriftway Grocery Store\n", "]\n", "\n", "# create a list of point geometry objects from the coordinate tuples - what we are going to use first\n", "geom_lst = [Geometry({'x': pt[0], 'y': pt[1], 'spatialReference': {'wkid': 4326}}) for pt in coord_lst]\n", "\n", "# create a spatially enabled dataframe - what we are going to use later\n", "grocery_df = pd.DataFrame(zip(nm_lst, geom_lst), columns=['store_name', 'SHAPE'])\n", "grocery_df.spatial.set_geometry('SHAPE')\n", "grocery_df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we are going to need a connection to ArcGIS Online to demonstrate the abiliy to use ArcGIS Online for geoenrichment. This is accomplished by instantiating a `GIS` object instance with valid credentials read from environment variables." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "GIS @ https://www.arcgis.com" ], "text/plain": [ "GIS @ https://www.arcgis.com version:9.4" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gis_agol = GIS(\n", " url=os.getenv('ESRI_GIS_URL'), \n", " username=os.getenv('ESRI_GIS_USERNAME'),\n", " password=os.getenv('ESRI_GIS_PASSWORD')\n", ")\n", "\n", "gis_agol" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Point List Using Defaults" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To enrich, we start by creating a `Country` object instance. As part of the constructor, we need to tell the object what Business Analyst source to use in the `gis` parameter. In this case, we are telling the object to use a local instance of ArcGIS Pro with Business Analyst and the United States data pack." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "usa_local = Country('usa', gis=GIS('pro'))\n", "\n", "usa_local" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we need to get some enrich variables to use. We can discover what is available using the `enrich_variables` property of the country object to retrieve a Pandas Data Frame of variables available for the country." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namealiasdata_collectionenrich_nameenrich_field_name
0CHILD_CY2021 Child PopulationAgeDependencyAgeDependency.CHILD_CYAgeDependency_CHILD_CY
1WORKAGE_CY2021 Working-Age PopulationAgeDependencyAgeDependency.WORKAGE_CYAgeDependency_WORKAGE_CY
2SENIOR_CY2021 Senior PopulationAgeDependencyAgeDependency.SENIOR_CYAgeDependency_SENIOR_CY
3CHLDDEP_CY2021 Child Dependency RatioAgeDependencyAgeDependency.CHLDDEP_CYAgeDependency_CHLDDEP_CY
4AGEDEP_CY2021 Age Dependency RatioAgeDependencyAgeDependency.AGEDEP_CYAgeDependency_AGEDEP_CY
..................
17958MOEMEDYRMV2019 Median Year Householder Moved In MOE (ACS...yearmovedinyearmovedin.MOEMEDYRMVyearmovedin_MOEMEDYRMV
17959RELMEDYRMV2019 Median Year Householder Moved In REL (ACS...yearmovedinyearmovedin.RELMEDYRMVyearmovedin_RELMEDYRMV
17960ACSOWNER2019 Owner Households (ACS 5-Yr)yearmovedinyearmovedin.ACSOWNERyearmovedin_ACSOWNER
17961MOEOWNER2019 Owner Households MOE (ACS 5-Yr)yearmovedinyearmovedin.MOEOWNERyearmovedin_MOEOWNER
17962RELOWNER2019 Owner Households REL (ACS 5-Yr)yearmovedinyearmovedin.RELOWNERyearmovedin_RELOWNER
\n", "

17963 rows × 5 columns

\n", "
" ], "text/plain": [ " name alias \\\n", "0 CHILD_CY 2021 Child Population \n", "1 WORKAGE_CY 2021 Working-Age Population \n", "2 SENIOR_CY 2021 Senior Population \n", "3 CHLDDEP_CY 2021 Child Dependency Ratio \n", "4 AGEDEP_CY 2021 Age Dependency Ratio \n", "... ... ... \n", "17958 MOEMEDYRMV 2019 Median Year Householder Moved In MOE (ACS... \n", "17959 RELMEDYRMV 2019 Median Year Householder Moved In REL (ACS... \n", "17960 ACSOWNER 2019 Owner Households (ACS 5-Yr) \n", "17961 MOEOWNER 2019 Owner Households MOE (ACS 5-Yr) \n", "17962 RELOWNER 2019 Owner Households REL (ACS 5-Yr) \n", "\n", " data_collection enrich_name enrich_field_name \n", "0 AgeDependency AgeDependency.CHILD_CY AgeDependency_CHILD_CY \n", "1 AgeDependency AgeDependency.WORKAGE_CY AgeDependency_WORKAGE_CY \n", "2 AgeDependency AgeDependency.SENIOR_CY AgeDependency_SENIOR_CY \n", "3 AgeDependency AgeDependency.CHLDDEP_CY AgeDependency_CHLDDEP_CY \n", "4 AgeDependency AgeDependency.AGEDEP_CY AgeDependency_AGEDEP_CY \n", "... ... ... ... \n", "17958 yearmovedin yearmovedin.MOEMEDYRMV yearmovedin_MOEMEDYRMV \n", "17959 yearmovedin yearmovedin.RELMEDYRMV yearmovedin_RELMEDYRMV \n", "17960 yearmovedin yearmovedin.ACSOWNER yearmovedin_ACSOWNER \n", "17961 yearmovedin yearmovedin.MOEOWNER yearmovedin_MOEOWNER \n", "17962 yearmovedin yearmovedin.RELOWNER yearmovedin_RELOWNER \n", "\n", "[17963 rows x 5 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ev = usa_local.enrich_variables\n", "\n", "ev" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Tens of thousands of variables is just a few too many to deal with, so we can parse this down a bit using some Pandas Data Frame filtering to get just key United States variables for the current year." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namealiasdata_collectionenrich_nameenrich_field_name
0TOTPOP_CY2021 Total PopulationKeyUSFactsKeyUSFacts.TOTPOP_CYKeyUSFacts_TOTPOP_CY
1GQPOP_CY2021 Group Quarters PopulationKeyUSFactsKeyUSFacts.GQPOP_CYKeyUSFacts_GQPOP_CY
2DIVINDX_CY2021 Diversity IndexKeyUSFactsKeyUSFacts.DIVINDX_CYKeyUSFacts_DIVINDX_CY
3TOTHH_CY2021 Total HouseholdsKeyUSFactsKeyUSFacts.TOTHH_CYKeyUSFacts_TOTHH_CY
4AVGHHSZ_CY2021 Average Household SizeKeyUSFactsKeyUSFacts.AVGHHSZ_CYKeyUSFacts_AVGHHSZ_CY
5MEDHINC_CY2021 Median Household IncomeKeyUSFactsKeyUSFacts.MEDHINC_CYKeyUSFacts_MEDHINC_CY
6AVGHINC_CY2021 Average Household IncomeKeyUSFactsKeyUSFacts.AVGHINC_CYKeyUSFacts_AVGHINC_CY
7PCI_CY2021 Per Capita IncomeKeyUSFactsKeyUSFacts.PCI_CYKeyUSFacts_PCI_CY
8TOTHU_CY2021 Total Housing UnitsKeyUSFactsKeyUSFacts.TOTHU_CYKeyUSFacts_TOTHU_CY
9OWNER_CY2021 Owner Occupied HUsKeyUSFactsKeyUSFacts.OWNER_CYKeyUSFacts_OWNER_CY
10RENTER_CY2021 Renter Occupied HUsKeyUSFactsKeyUSFacts.RENTER_CYKeyUSFacts_RENTER_CY
11VACANT_CY2021 Vacant Housing UnitsKeyUSFactsKeyUSFacts.VACANT_CYKeyUSFacts_VACANT_CY
12MEDVAL_CY2021 Median Home ValueKeyUSFactsKeyUSFacts.MEDVAL_CYKeyUSFacts_MEDVAL_CY
13AVGVAL_CY2021 Average Home ValueKeyUSFactsKeyUSFacts.AVGVAL_CYKeyUSFacts_AVGVAL_CY
14POPGRW10CY2010-2021 Growth Rate: PopulationKeyUSFactsKeyUSFacts.POPGRW10CYKeyUSFacts_POPGRW10CY
15HHGRW10CY2010-2021 Growth Rate: HouseholdsKeyUSFactsKeyUSFacts.HHGRW10CYKeyUSFacts_HHGRW10CY
16FAMGRW10CY2010-2021 Growth Rate: FamiliesKeyUSFactsKeyUSFacts.FAMGRW10CYKeyUSFacts_FAMGRW10CY
17DPOP_CY2021 Total Daytime PopulationKeyUSFactsKeyUSFacts.DPOP_CYKeyUSFacts_DPOP_CY
18DPOPWRK_CY2021 Daytime Pop: WorkersKeyUSFactsKeyUSFacts.DPOPWRK_CYKeyUSFacts_DPOPWRK_CY
19DPOPRES_CY2021 Daytime Pop: ResidentsKeyUSFactsKeyUSFacts.DPOPRES_CYKeyUSFacts_DPOPRES_CY
\n", "
" ], "text/plain": [ " name alias data_collection \\\n", "0 TOTPOP_CY 2021 Total Population KeyUSFacts \n", "1 GQPOP_CY 2021 Group Quarters Population KeyUSFacts \n", "2 DIVINDX_CY 2021 Diversity Index KeyUSFacts \n", "3 TOTHH_CY 2021 Total Households KeyUSFacts \n", "4 AVGHHSZ_CY 2021 Average Household Size KeyUSFacts \n", "5 MEDHINC_CY 2021 Median Household Income KeyUSFacts \n", "6 AVGHINC_CY 2021 Average Household Income KeyUSFacts \n", "7 PCI_CY 2021 Per Capita Income KeyUSFacts \n", "8 TOTHU_CY 2021 Total Housing Units KeyUSFacts \n", "9 OWNER_CY 2021 Owner Occupied HUs KeyUSFacts \n", "10 RENTER_CY 2021 Renter Occupied HUs KeyUSFacts \n", "11 VACANT_CY 2021 Vacant Housing Units KeyUSFacts \n", "12 MEDVAL_CY 2021 Median Home Value KeyUSFacts \n", "13 AVGVAL_CY 2021 Average Home Value KeyUSFacts \n", "14 POPGRW10CY 2010-2021 Growth Rate: Population KeyUSFacts \n", "15 HHGRW10CY 2010-2021 Growth Rate: Households KeyUSFacts \n", "16 FAMGRW10CY 2010-2021 Growth Rate: Families KeyUSFacts \n", "17 DPOP_CY 2021 Total Daytime Population KeyUSFacts \n", "18 DPOPWRK_CY 2021 Daytime Pop: Workers KeyUSFacts \n", "19 DPOPRES_CY 2021 Daytime Pop: Residents KeyUSFacts \n", "\n", " enrich_name enrich_field_name \n", "0 KeyUSFacts.TOTPOP_CY KeyUSFacts_TOTPOP_CY \n", "1 KeyUSFacts.GQPOP_CY KeyUSFacts_GQPOP_CY \n", "2 KeyUSFacts.DIVINDX_CY KeyUSFacts_DIVINDX_CY \n", "3 KeyUSFacts.TOTHH_CY KeyUSFacts_TOTHH_CY \n", "4 KeyUSFacts.AVGHHSZ_CY KeyUSFacts_AVGHHSZ_CY \n", "5 KeyUSFacts.MEDHINC_CY KeyUSFacts_MEDHINC_CY \n", "6 KeyUSFacts.AVGHINC_CY KeyUSFacts_AVGHINC_CY \n", "7 KeyUSFacts.PCI_CY KeyUSFacts_PCI_CY \n", "8 KeyUSFacts.TOTHU_CY KeyUSFacts_TOTHU_CY \n", "9 KeyUSFacts.OWNER_CY KeyUSFacts_OWNER_CY \n", "10 KeyUSFacts.RENTER_CY KeyUSFacts_RENTER_CY \n", "11 KeyUSFacts.VACANT_CY KeyUSFacts_VACANT_CY \n", "12 KeyUSFacts.MEDVAL_CY KeyUSFacts_MEDVAL_CY \n", "13 KeyUSFacts.AVGVAL_CY KeyUSFacts_AVGVAL_CY \n", "14 KeyUSFacts.POPGRW10CY KeyUSFacts_POPGRW10CY \n", "15 KeyUSFacts.HHGRW10CY KeyUSFacts_HHGRW10CY \n", "16 KeyUSFacts.FAMGRW10CY KeyUSFacts_FAMGRW10CY \n", "17 KeyUSFacts.DPOP_CY KeyUSFacts_DPOP_CY \n", "18 KeyUSFacts.DPOPWRK_CY KeyUSFacts_DPOPWRK_CY \n", "19 KeyUSFacts.DPOPRES_CY KeyUSFacts_DPOPRES_CY " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kv = ev[\n", " (ev.data_collection.str.lower().str.contains('key'))\n", " & (ev.name.str.lower().str.endswith('cy'))\n", "].reset_index(drop=True)\n", "\n", "kv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we can enrich using the points and variables collected above. Please notice, we are not specifying the area around the input points, so we the proximity defaults are being used - a straight line distance of one kilometer around the points. This circular area is then used to apportion data to the locations specified by the point geometries." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2 entries, 0 to 1\n", "Data columns (total 27 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 has_data 2 non-null int64 \n", " 1 area_type 2 non-null object \n", " 2 buffer_units 2 non-null object \n", " 3 buffer_unit 2 non-null object \n", " 4 buffer_radii 2 non-null float64 \n", " 5 aggregation_method 2 non-null object \n", " 6 keyusfacts_totpop_cy 2 non-null float64 \n", " 7 keyusfacts_gqpop_cy 2 non-null float64 \n", " 8 keyusfacts_divindx_cy 2 non-null float64 \n", " 9 keyusfacts_tothh_cy 2 non-null float64 \n", " 10 keyusfacts_avghhsz_cy 2 non-null float64 \n", " 11 keyusfacts_medhinc_cy 2 non-null float64 \n", " 12 keyusfacts_avghinc_cy 2 non-null float64 \n", " 13 keyusfacts_pci_cy 2 non-null float64 \n", " 14 keyusfacts_tothu_cy 2 non-null float64 \n", " 15 keyusfacts_owner_cy 2 non-null float64 \n", " 16 keyusfacts_renter_cy 2 non-null float64 \n", " 17 keyusfacts_vacant_cy 2 non-null float64 \n", " 18 keyusfacts_medval_cy 2 non-null float64 \n", " 19 keyusfacts_avgval_cy 2 non-null float64 \n", " 20 keyusfacts_popgrw10cy 2 non-null float64 \n", " 21 keyusfacts_hhgrw10cy 2 non-null float64 \n", " 22 keyusfacts_famgrw10cy 2 non-null float64 \n", " 23 keyusfacts_dpop_cy 2 non-null float64 \n", " 24 keyusfacts_dpopwrk_cy 2 non-null float64 \n", " 25 keyusfacts_dpopres_cy 2 non-null float64 \n", " 26 SHAPE 2 non-null geometry\n", "dtypes: float64(21), geometry(1), int64(1), object(4)\n", "memory usage: 560.0+ bytes\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
has_dataarea_typebuffer_unitsbuffer_unitbuffer_radiiaggregation_methodkeyusfacts_totpop_cykeyusfacts_gqpop_cykeyusfacts_divindx_cykeyusfacts_tothh_cy...keyusfacts_vacant_cykeyusfacts_medval_cykeyusfacts_avgval_cykeyusfacts_popgrw10cykeyusfacts_hhgrw10cykeyusfacts_famgrw10cykeyusfacts_dpop_cykeyusfacts_dpopwrk_cykeyusfacts_dpopres_cySHAPE
01RingBufferesriKilometersesriKilometers1.0BlockApportionment:US.BlockGroups;PointsLayer:...2706.066.038.61727.0...218.0381908.0419728.01.461.741.087604.06222.01382.0{\"x\": -122.90748349999996, \"y\": 47.04502490000...
11RingBufferesriKilometersesriKilometers1.0BlockApportionment:US.BlockGroups;PointsLayer:...4672.075.041.82145.0...116.0323665.0360023.00.730.710.544623.02558.02065.0{\"x\": -122.87495999999999, \"y\": 47.04640310000...
\n", "

2 rows × 27 columns

\n", "
" ], "text/plain": [ " has_data area_type buffer_units buffer_unit buffer_radii \\\n", "0 1 RingBuffer esriKilometers esriKilometers 1.0 \n", "1 1 RingBuffer esriKilometers esriKilometers 1.0 \n", "\n", " aggregation_method keyusfacts_totpop_cy \\\n", "0 BlockApportionment:US.BlockGroups;PointsLayer:... 2706.0 \n", "1 BlockApportionment:US.BlockGroups;PointsLayer:... 4672.0 \n", "\n", " keyusfacts_gqpop_cy keyusfacts_divindx_cy keyusfacts_tothh_cy ... \\\n", "0 66.0 38.6 1727.0 ... \n", "1 75.0 41.8 2145.0 ... \n", "\n", " keyusfacts_vacant_cy keyusfacts_medval_cy keyusfacts_avgval_cy \\\n", "0 218.0 381908.0 419728.0 \n", "1 116.0 323665.0 360023.0 \n", "\n", " keyusfacts_popgrw10cy keyusfacts_hhgrw10cy keyusfacts_famgrw10cy \\\n", "0 1.46 1.74 1.08 \n", "1 0.73 0.71 0.54 \n", "\n", " keyusfacts_dpop_cy keyusfacts_dpopwrk_cy keyusfacts_dpopres_cy \\\n", "0 7604.0 6222.0 1382.0 \n", "1 4623.0 2558.0 2065.0 \n", "\n", " SHAPE \n", "0 {\"x\": -122.90748349999996, \"y\": 47.04502490000... \n", "1 {\"x\": -122.87495999999999, \"y\": 47.04640310000... \n", "\n", "[2 rows x 27 columns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pt1_enrich_df = usa_local.enrich(\n", " geographies=geom_lst,\n", " enrich_variables=kv\n", ")\n", "\n", "pt1_enrich_df.info()\n", "pt1_enrich_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Specify Proximity Value\n", "\n", "If wanting to use a value different from the default of one kilometer (highly recommended), this can easily be specified using the `proximity_value` parameter." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2 entries, 0 to 1\n", "Data columns (total 27 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 has_data 2 non-null int64 \n", " 1 area_type 2 non-null object \n", " 2 buffer_units 2 non-null object \n", " 3 buffer_unit 2 non-null object \n", " 4 buffer_radii 2 non-null float64 \n", " 5 aggregation_method 2 non-null object \n", " 6 keyusfacts_totpop_cy 2 non-null float64 \n", " 7 keyusfacts_gqpop_cy 2 non-null float64 \n", " 8 keyusfacts_divindx_cy 2 non-null float64 \n", " 9 keyusfacts_tothh_cy 2 non-null float64 \n", " 10 keyusfacts_avghhsz_cy 2 non-null float64 \n", " 11 keyusfacts_medhinc_cy 2 non-null float64 \n", " 12 keyusfacts_avghinc_cy 2 non-null float64 \n", " 13 keyusfacts_pci_cy 2 non-null float64 \n", " 14 keyusfacts_tothu_cy 2 non-null float64 \n", " 15 keyusfacts_owner_cy 2 non-null float64 \n", " 16 keyusfacts_renter_cy 2 non-null float64 \n", " 17 keyusfacts_vacant_cy 2 non-null float64 \n", " 18 keyusfacts_medval_cy 2 non-null float64 \n", " 19 keyusfacts_avgval_cy 2 non-null float64 \n", " 20 keyusfacts_popgrw10cy 2 non-null float64 \n", " 21 keyusfacts_hhgrw10cy 2 non-null float64 \n", " 22 keyusfacts_famgrw10cy 2 non-null float64 \n", " 23 keyusfacts_dpop_cy 2 non-null float64 \n", " 24 keyusfacts_dpopwrk_cy 2 non-null float64 \n", " 25 keyusfacts_dpopres_cy 2 non-null float64 \n", " 26 SHAPE 2 non-null geometry\n", "dtypes: float64(21), geometry(1), int64(1), object(4)\n", "memory usage: 560.0+ bytes\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
has_dataarea_typebuffer_unitsbuffer_unitbuffer_radiiaggregation_methodkeyusfacts_totpop_cykeyusfacts_gqpop_cykeyusfacts_divindx_cykeyusfacts_tothh_cy...keyusfacts_vacant_cykeyusfacts_medval_cykeyusfacts_avgval_cykeyusfacts_popgrw10cykeyusfacts_hhgrw10cykeyusfacts_famgrw10cykeyusfacts_dpop_cykeyusfacts_dpopwrk_cykeyusfacts_dpopres_cySHAPE
01RingBufferesriKilometersesriKilometers5.0BlockApportionment:US.BlockGroups;PointsLayer:...67415.01265.045.429537.0...1431.0371293.0415153.01.591.571.4482942.050340.032602.0{\"x\": -122.90748349999996, \"y\": 47.04502490000...
11RingBufferesriKilometersesriKilometers5.0BlockApportionment:US.BlockGroups;PointsLayer:...70224.01350.048.530852.0...1636.0369053.0415710.00.991.010.8789116.054806.034310.0{\"x\": -122.87495999999999, \"y\": 47.04640310000...
\n", "

2 rows × 27 columns

\n", "
" ], "text/plain": [ " has_data area_type buffer_units buffer_unit buffer_radii \\\n", "0 1 RingBuffer esriKilometers esriKilometers 5.0 \n", "1 1 RingBuffer esriKilometers esriKilometers 5.0 \n", "\n", " aggregation_method keyusfacts_totpop_cy \\\n", "0 BlockApportionment:US.BlockGroups;PointsLayer:... 67415.0 \n", "1 BlockApportionment:US.BlockGroups;PointsLayer:... 70224.0 \n", "\n", " keyusfacts_gqpop_cy keyusfacts_divindx_cy keyusfacts_tothh_cy ... \\\n", "0 1265.0 45.4 29537.0 ... \n", "1 1350.0 48.5 30852.0 ... \n", "\n", " keyusfacts_vacant_cy keyusfacts_medval_cy keyusfacts_avgval_cy \\\n", "0 1431.0 371293.0 415153.0 \n", "1 1636.0 369053.0 415710.0 \n", "\n", " keyusfacts_popgrw10cy keyusfacts_hhgrw10cy keyusfacts_famgrw10cy \\\n", "0 1.59 1.57 1.44 \n", "1 0.99 1.01 0.87 \n", "\n", " keyusfacts_dpop_cy keyusfacts_dpopwrk_cy keyusfacts_dpopres_cy \\\n", "0 82942.0 50340.0 32602.0 \n", "1 89116.0 54806.0 34310.0 \n", "\n", " SHAPE \n", "0 {\"x\": -122.90748349999996, \"y\": 47.04502490000... \n", "1 {\"x\": -122.87495999999999, \"y\": 47.04640310000... \n", "\n", "[2 rows x 27 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pt2_enrich_df = usa_local.enrich(\n", " geographies=geom_lst,\n", " enrich_variables=kv,\n", " proximity_value=5\n", ")\n", "\n", "pt2_enrich_df.info()\n", "pt2_enrich_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Specify Proximity Value and Metric\n", "\n", "If desiring to use a different measure of distance, such as miles, this can be specified as well using the `proximity_metric` parameter." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2 entries, 0 to 1\n", "Data columns (total 27 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 has_data 2 non-null int64 \n", " 1 area_type 2 non-null object \n", " 2 buffer_units 2 non-null object \n", " 3 buffer_unit 2 non-null object \n", " 4 buffer_radii 2 non-null float64 \n", " 5 aggregation_method 2 non-null object \n", " 6 keyusfacts_totpop_cy 2 non-null float64 \n", " 7 keyusfacts_gqpop_cy 2 non-null float64 \n", " 8 keyusfacts_divindx_cy 2 non-null float64 \n", " 9 keyusfacts_tothh_cy 2 non-null float64 \n", " 10 keyusfacts_avghhsz_cy 2 non-null float64 \n", " 11 keyusfacts_medhinc_cy 2 non-null float64 \n", " 12 keyusfacts_avghinc_cy 2 non-null float64 \n", " 13 keyusfacts_pci_cy 2 non-null float64 \n", " 14 keyusfacts_tothu_cy 2 non-null float64 \n", " 15 keyusfacts_owner_cy 2 non-null float64 \n", " 16 keyusfacts_renter_cy 2 non-null float64 \n", " 17 keyusfacts_vacant_cy 2 non-null float64 \n", " 18 keyusfacts_medval_cy 2 non-null float64 \n", " 19 keyusfacts_avgval_cy 2 non-null float64 \n", " 20 keyusfacts_popgrw10cy 2 non-null float64 \n", " 21 keyusfacts_hhgrw10cy 2 non-null float64 \n", " 22 keyusfacts_famgrw10cy 2 non-null float64 \n", " 23 keyusfacts_dpop_cy 2 non-null float64 \n", " 24 keyusfacts_dpopwrk_cy 2 non-null float64 \n", " 25 keyusfacts_dpopres_cy 2 non-null float64 \n", " 26 SHAPE 2 non-null geometry\n", "dtypes: float64(21), geometry(1), int64(1), object(4)\n", "memory usage: 560.0+ bytes\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
has_dataarea_typebuffer_unitsbuffer_unitbuffer_radiiaggregation_methodkeyusfacts_totpop_cykeyusfacts_gqpop_cykeyusfacts_divindx_cykeyusfacts_tothh_cy...keyusfacts_vacant_cykeyusfacts_medval_cykeyusfacts_avgval_cykeyusfacts_popgrw10cykeyusfacts_hhgrw10cykeyusfacts_famgrw10cykeyusfacts_dpop_cykeyusfacts_dpopwrk_cykeyusfacts_dpopres_cySHAPE
01RingBufferesriMilesesriMiles5.0BlockApportionment:US.BlockGroups;PointsLayer:...121938.02969.047.451980.0...2798.0370690.0428025.01.311.291.14140743.079614.061129.0{\"x\": -122.90748349999996, \"y\": 47.04502490000...
11RingBufferesriMilesesriMiles5.0BlockApportionment:US.BlockGroups;PointsLayer:...148032.02696.051.461965.0...3451.0359612.0412573.01.421.371.26162638.087230.075408.0{\"x\": -122.87495999999999, \"y\": 47.04640310000...
\n", "

2 rows × 27 columns

\n", "
" ], "text/plain": [ " has_data area_type buffer_units buffer_unit buffer_radii \\\n", "0 1 RingBuffer esriMiles esriMiles 5.0 \n", "1 1 RingBuffer esriMiles esriMiles 5.0 \n", "\n", " aggregation_method keyusfacts_totpop_cy \\\n", "0 BlockApportionment:US.BlockGroups;PointsLayer:... 121938.0 \n", "1 BlockApportionment:US.BlockGroups;PointsLayer:... 148032.0 \n", "\n", " keyusfacts_gqpop_cy keyusfacts_divindx_cy keyusfacts_tothh_cy ... \\\n", "0 2969.0 47.4 51980.0 ... \n", "1 2696.0 51.4 61965.0 ... \n", "\n", " keyusfacts_vacant_cy keyusfacts_medval_cy keyusfacts_avgval_cy \\\n", "0 2798.0 370690.0 428025.0 \n", "1 3451.0 359612.0 412573.0 \n", "\n", " keyusfacts_popgrw10cy keyusfacts_hhgrw10cy keyusfacts_famgrw10cy \\\n", "0 1.31 1.29 1.14 \n", "1 1.42 1.37 1.26 \n", "\n", " keyusfacts_dpop_cy keyusfacts_dpopwrk_cy keyusfacts_dpopres_cy \\\n", "0 140743.0 79614.0 61129.0 \n", "1 162638.0 87230.0 75408.0 \n", "\n", " SHAPE \n", "0 {\"x\": -122.90748349999996, \"y\": 47.04502490000... \n", "1 {\"x\": -122.87495999999999, \"y\": 47.04640310000... \n", "\n", "[2 rows x 27 columns]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pt3_enrich_df = usa_local.enrich(\n", " geographies=geom_lst,\n", " enrich_variables=kv,\n", " proximity_value=5,\n", " proximity_metric='miles'\n", ")\n", "\n", "pt3_enrich_df.info()\n", "pt3_enrich_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Specify Proximity Type\n", "\n", "The above examples all use the default `proximity_type` of `straight_line`. However, based on what transportation network you have available with the GIS source you are using, other methods are also available. These can be discovered using the `travel_modes` property of the `Country`. Any of the vaues in the `names` column are valid values for `proximity_type` in addition to the default `straight_line`." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
namealiasdescriptiontypeimpedanceimpedance_categorytime_attribute_namedistance_attribute_name
0driving_timeDriving TimeModels the movement of cars and other similar ...AUTOMOBILETravelTimetemporalTravelTimeKilometers
1driving_distanceDriving DistanceModels the movement of cars and other similar ...AUTOMOBILEKilometersdistanceTravelTimeKilometers
2trucking_timeTrucking TimeModels basic truck travel by preferring design...TRUCKTruckTravelTimetemporalTruckTravelTimeKilometers
3trucking_distanceTrucking DistanceModels basic truck travel by preferring design...TRUCKKilometersdistanceTruckTravelTimeKilometers
4walking_timeWalking TimeFollows paths and roads that allow pedestrian ...WALKWalkTimetemporalWalkTimeKilometers
5walking_distanceWalking DistanceFollows paths and roads that allow pedestrian ...WALKKilometersdistanceWalkTimeKilometers
6rural_driving_timeRural Driving TimeModels the movement of cars and other similar ...AUTOMOBILETravelTimetemporalTravelTimeKilometers
7rural_driving_distanceRural Driving DistanceModels the movement of cars and other similar ...AUTOMOBILEKilometersdistanceTravelTimeKilometers
\n", "
" ], "text/plain": [ " name alias \\\n", "0 driving_time Driving Time \n", "1 driving_distance Driving Distance \n", "2 trucking_time Trucking Time \n", "3 trucking_distance Trucking Distance \n", "4 walking_time Walking Time \n", "5 walking_distance Walking Distance \n", "6 rural_driving_time Rural Driving Time \n", "7 rural_driving_distance Rural Driving Distance \n", "\n", " description type \\\n", "0 Models the movement of cars and other similar ... AUTOMOBILE \n", "1 Models the movement of cars and other similar ... AUTOMOBILE \n", "2 Models basic truck travel by preferring design... TRUCK \n", "3 Models basic truck travel by preferring design... TRUCK \n", "4 Follows paths and roads that allow pedestrian ... WALK \n", "5 Follows paths and roads that allow pedestrian ... WALK \n", "6 Models the movement of cars and other similar ... AUTOMOBILE \n", "7 Models the movement of cars and other similar ... AUTOMOBILE \n", "\n", " impedance impedance_category time_attribute_name \\\n", "0 TravelTime temporal TravelTime \n", "1 Kilometers distance TravelTime \n", "2 TruckTravelTime temporal TruckTravelTime \n", "3 Kilometers distance TruckTravelTime \n", "4 WalkTime temporal WalkTime \n", "5 Kilometers distance WalkTime \n", "6 TravelTime temporal TravelTime \n", "7 Kilometers distance TravelTime \n", "\n", " distance_attribute_name \n", "0 Kilometers \n", "1 Kilometers \n", "2 Kilometers \n", "3 Kilometers \n", "4 Kilometers \n", "5 Kilometers \n", "6 Kilometers \n", "7 Kilometers " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "usa_local.travel_modes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hence, if we want to use both paved _and_ gravel roads (because gravel roads are _fun_), we can use `rural_driving_time`. Before selecting, we can investigate the details of the method by looking at the description." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'Models the movement of cars and other similar small automobiles, such as pickup trucks, and finds solutions that optimize travel distance. Travel obeys one-way roads, avoids illegal turns, and follows other rules that are specific to cars, but does not discourage travel on unpaved roads.'" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "usa_local.travel_modes[usa_local.travel_modes.name == 'rural_driving_distance'].iloc[0]['description']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_Most_ people aren't going to be driving as fast on a gravel road as they are on an interstate. This enables us to take into consideration the differences in speed based on the road type. Using drive time as a method to define proximity around a location is a much better represenation of how people actually move around and interact with their surrouding environemnt...such as finding food at a grocery store." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2 entries, 0 to 1\n", "Data columns (total 27 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 has_data 2 non-null int64 \n", " 1 area_type 2 non-null object \n", " 2 buffer_units 2 non-null object \n", " 3 buffer_unit 2 non-null object \n", " 4 buffer_radii 2 non-null float64 \n", " 5 aggregation_method 2 non-null object \n", " 6 keyusfacts_totpop_cy 2 non-null float64 \n", " 7 keyusfacts_gqpop_cy 2 non-null float64 \n", " 8 keyusfacts_divindx_cy 2 non-null float64 \n", " 9 keyusfacts_tothh_cy 2 non-null float64 \n", " 10 keyusfacts_avghhsz_cy 2 non-null float64 \n", " 11 keyusfacts_medhinc_cy 2 non-null float64 \n", " 12 keyusfacts_avghinc_cy 2 non-null float64 \n", " 13 keyusfacts_pci_cy 2 non-null float64 \n", " 14 keyusfacts_tothu_cy 2 non-null float64 \n", " 15 keyusfacts_owner_cy 2 non-null float64 \n", " 16 keyusfacts_renter_cy 2 non-null float64 \n", " 17 keyusfacts_vacant_cy 2 non-null float64 \n", " 18 keyusfacts_medval_cy 2 non-null float64 \n", " 19 keyusfacts_avgval_cy 2 non-null float64 \n", " 20 keyusfacts_popgrw10cy 2 non-null float64 \n", " 21 keyusfacts_hhgrw10cy 2 non-null float64 \n", " 22 keyusfacts_famgrw10cy 2 non-null float64 \n", " 23 keyusfacts_dpop_cy 2 non-null float64 \n", " 24 keyusfacts_dpopwrk_cy 2 non-null float64 \n", " 25 keyusfacts_dpopres_cy 2 non-null float64 \n", " 26 SHAPE 2 non-null geometry\n", "dtypes: float64(21), geometry(1), int64(1), object(4)\n", "memory usage: 560.0+ bytes\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
has_dataarea_typebuffer_unitsbuffer_unitbuffer_radiiaggregation_methodkeyusfacts_totpop_cykeyusfacts_gqpop_cykeyusfacts_divindx_cykeyusfacts_tothh_cy...keyusfacts_vacant_cykeyusfacts_medval_cykeyusfacts_avgval_cykeyusfacts_popgrw10cykeyusfacts_hhgrw10cykeyusfacts_famgrw10cykeyusfacts_dpop_cykeyusfacts_dpopwrk_cykeyusfacts_dpopres_cySHAPE
01Rural Driving TimeMinutesMinutes12.0BlockApportionment:US.BlockGroups;PointsLayer:...89167.02085.047.439012.0...2045.0370989.0423914.01.381.361.2113049.068827.044222.0{\"x\": -122.90748349999996, \"y\": 47.04502490000...
11Rural Driving TimeMinutesMinutes12.0BlockApportionment:US.BlockGroups;PointsLayer:...125186.02604.052.153293.0...3074.0359599.0403034.01.431.411.3144557.081408.063149.0{\"x\": -122.87495999999999, \"y\": 47.04640310000...
\n", "

2 rows × 27 columns

\n", "
" ], "text/plain": [ " has_data area_type buffer_units buffer_unit buffer_radii \\\n", "0 1 Rural Driving Time Minutes Minutes 12.0 \n", "1 1 Rural Driving Time Minutes Minutes 12.0 \n", "\n", " aggregation_method keyusfacts_totpop_cy \\\n", "0 BlockApportionment:US.BlockGroups;PointsLayer:... 89167.0 \n", "1 BlockApportionment:US.BlockGroups;PointsLayer:... 125186.0 \n", "\n", " keyusfacts_gqpop_cy keyusfacts_divindx_cy keyusfacts_tothh_cy ... \\\n", "0 2085.0 47.4 39012.0 ... \n", "1 2604.0 52.1 53293.0 ... \n", "\n", " keyusfacts_vacant_cy keyusfacts_medval_cy keyusfacts_avgval_cy \\\n", "0 2045.0 370989.0 423914.0 \n", "1 3074.0 359599.0 403034.0 \n", "\n", " keyusfacts_popgrw10cy keyusfacts_hhgrw10cy keyusfacts_famgrw10cy \\\n", "0 1.38 1.36 1.2 \n", "1 1.43 1.41 1.3 \n", "\n", " keyusfacts_dpop_cy keyusfacts_dpopwrk_cy keyusfacts_dpopres_cy \\\n", "0 113049.0 68827.0 44222.0 \n", "1 144557.0 81408.0 63149.0 \n", "\n", " SHAPE \n", "0 {\"x\": -122.90748349999996, \"y\": 47.04502490000... \n", "1 {\"x\": -122.87495999999999, \"y\": 47.04640310000... \n", "\n", "[2 rows x 27 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pt4_enrich_df = usa_local.enrich(\n", " geographies=geom_lst,\n", " enrich_variables=kv,\n", " proximity_type='rural_driving_time',\n", " proximity_value=12,\n", " proximity_metric='minutes'\n", ")\n", "\n", "pt4_enrich_df.info()\n", "pt4_enrich_df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Use a Spatially Enabled Data Frame\n", "\n", "Finally, although using a list of `Geometry` objects may be useful, likely a much more common paradigm is the Spatially Enabled Data Frame. Above, we created a Spatially Enabled Data Frame. We can use this as input into the `geographies` parameter.\n", "\n", "Also, just to demonstrate the interchangability of GIS sources, we are going to create a `Country` instance using the connection to ArcGIS Online, and perform the same workflow." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "RangeIndex: 2 entries, 0 to 1\n", "Data columns (total 27 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 has_data 2 non-null int64 \n", " 1 area_type 2 non-null object \n", " 2 buffer_units 2 non-null object \n", " 3 buffer_unit 2 non-null object \n", " 4 buffer_radii 2 non-null float64 \n", " 5 aggregation_method 2 non-null object \n", " 6 keyusfacts_totpop_cy 2 non-null float64 \n", " 7 keyusfacts_gqpop_cy 2 non-null float64 \n", " 8 keyusfacts_divindx_cy 2 non-null float64 \n", " 9 keyusfacts_tothh_cy 2 non-null float64 \n", " 10 keyusfacts_avghhsz_cy 2 non-null float64 \n", " 11 keyusfacts_medhinc_cy 2 non-null float64 \n", " 12 keyusfacts_avghinc_cy 2 non-null float64 \n", " 13 keyusfacts_pci_cy 2 non-null float64 \n", " 14 keyusfacts_tothu_cy 2 non-null float64 \n", " 15 keyusfacts_owner_cy 2 non-null float64 \n", " 16 keyusfacts_renter_cy 2 non-null float64 \n", " 17 keyusfacts_vacant_cy 2 non-null float64 \n", " 18 keyusfacts_medval_cy 2 non-null float64 \n", " 19 keyusfacts_avgval_cy 2 non-null float64 \n", " 20 keyusfacts_popgrw10cy 2 non-null float64 \n", " 21 keyusfacts_hhgrw10cy 2 non-null float64 \n", " 22 keyusfacts_famgrw10cy 2 non-null float64 \n", " 23 keyusfacts_dpop_cy 2 non-null float64 \n", " 24 keyusfacts_dpopwrk_cy 2 non-null float64 \n", " 25 keyusfacts_dpopres_cy 2 non-null float64 \n", " 26 SHAPE 2 non-null geometry\n", "dtypes: float64(21), geometry(1), int64(1), object(4)\n", "memory usage: 560.0+ bytes\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
has_dataarea_typebuffer_unitsbuffer_unitbuffer_radiiaggregation_methodkeyusfacts_totpop_cykeyusfacts_gqpop_cykeyusfacts_divindx_cykeyusfacts_tothh_cy...keyusfacts_vacant_cykeyusfacts_medval_cykeyusfacts_avgval_cykeyusfacts_popgrw10cykeyusfacts_hhgrw10cykeyusfacts_famgrw10cykeyusfacts_dpop_cykeyusfacts_dpopwrk_cykeyusfacts_dpopres_cySHAPE
01Rural Driving TimeMinutesMinutes12.0BlockApportionment:US.BlockGroups;PointsLayer:...89167.02085.047.439012.0...2045.0370989.0423914.01.381.361.2113049.068827.044222.0{\"x\": -122.90748349999996, \"y\": 47.04502490000...
11Rural Driving TimeMinutesMinutes12.0BlockApportionment:US.BlockGroups;PointsLayer:...125186.02604.052.153293.0...3074.0359599.0403034.01.431.411.3144557.081408.063149.0{\"x\": -122.87495999999999, \"y\": 47.04640310000...
\n", "

2 rows × 27 columns

\n", "
" ], "text/plain": [ " has_data area_type buffer_units buffer_unit buffer_radii \\\n", "0 1 Rural Driving Time Minutes Minutes 12.0 \n", "1 1 Rural Driving Time Minutes Minutes 12.0 \n", "\n", " aggregation_method keyusfacts_totpop_cy \\\n", "0 BlockApportionment:US.BlockGroups;PointsLayer:... 89167.0 \n", "1 BlockApportionment:US.BlockGroups;PointsLayer:... 125186.0 \n", "\n", " keyusfacts_gqpop_cy keyusfacts_divindx_cy keyusfacts_tothh_cy ... \\\n", "0 2085.0 47.4 39012.0 ... \n", "1 2604.0 52.1 53293.0 ... \n", "\n", " keyusfacts_vacant_cy keyusfacts_medval_cy keyusfacts_avgval_cy \\\n", "0 2045.0 370989.0 423914.0 \n", "1 3074.0 359599.0 403034.0 \n", "\n", " keyusfacts_popgrw10cy keyusfacts_hhgrw10cy keyusfacts_famgrw10cy \\\n", "0 1.38 1.36 1.2 \n", "1 1.43 1.41 1.3 \n", "\n", " keyusfacts_dpop_cy keyusfacts_dpopwrk_cy keyusfacts_dpopres_cy \\\n", "0 113049.0 68827.0 44222.0 \n", "1 144557.0 81408.0 63149.0 \n", "\n", " SHAPE \n", "0 {\"x\": -122.90748349999996, \"y\": 47.04502490000... \n", "1 {\"x\": -122.87495999999999, \"y\": 47.04640310000... \n", "\n", "[2 rows x 27 columns]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# create country\n", "usa_gis = Country('usa', gis=gis_agol)\n", "\n", "# select variables\n", "ev = usa_gis.enrich_variables\n", "kv = ev[\n", " (ev.data_collection.str.lower().str.contains('key'))\n", " & (ev.name.str.lower().str.endswith('cy'))\n", "].reset_index(drop=True)\n", "\n", "# perform enrichment\n", "pt5_enrich_df = usa_gis.enrich(\n", " geographies=geom_lst,\n", " enrich_variables=kv,\n", " proximity_type='rural_driving_time',\n", " proximity_value=12,\n", " proximity_metric='minutes'\n", ")\n", "\n", "pt5_enrich_df.info()\n", "pt5_enrich_df.head()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.11" } }, "nbformat": 4, "nbformat_minor": 4 }